JUnit

Version 5.14.1, 2026-01-29



Table of Contents

Overview 1
Writing Tests 3
Annotations 3
Definitions 7
Test Classes and Methods 7
Display Names 10
Assertions 13
Assumptions 20
Exception Handling 21
Disabling Tests 24
Conditional Test Execution 25
Tagging and Filtering 33
Test Execution Order 34
Test Instance Lifecycle 37
Nested Tests 38
Dependency Injection for Constructors and Methods 43
Test Interfaces and Default Methods 46
Repeated Tests 49
Parameterized Classes and Tests 54
Class Templates 86
Test Templates 87
Dynamic Tests 87
Timeouts 93
Parallel Execution 97
Built-in Extensions 106
Migrating from JUnit 4 113
Running Tests 121
IDE Support 121
Build Support 122
Console Launcher 132
Using JUnit 4 to run the JUnit Platform 142
Discovery Selectors 145
Configuration Parameters 146
Tags 147
Capturing Standard Output/Error 148
Using Listeners and Interceptors 149
Stack Trace Pruning 151

Discovery Issues 151



Extension Model
Registering Extensions
Conditional Test Execution
Test Instance Pre-construct Callback
Test Instance Factories
Test Instance Post-processing
Test Instance Pre-destroy Callback
Parameter Resolution
Test Result Processing
Test Lifecycle Callbacks
Exception Handling
Pre-Interrupt Callback
Intercepting Invocations
Providing Invocation Contexts for Class Templates
Providing Invocation Contexts for Test Templates
Keeping State in Extensions
Supported Utilities in Extensions
Relative Execution Order of User Code and Extensions
Advanced Topics
JUnit Platform Reporting
JUnit Platform Suite Engine
JUnit Platform Test Kit
JUnit Platform Launcher API
Test Engines
API Evolution
Release Notes

Appendix

153
153
161
162
162
163
163
163
169
170
172
174
174
175
176
178
182
184
196
196
199
200
208
221
224
227
234



Overview

The goal of this document is to provide comprehensive reference documentation for programmers
writing tests, extension authors, and engine authors as well as build tool and IDE vendors.

What is JUnit 5?

Unlike previous versions of JUnit, JUnit 5 is composed of several different modules from three
different sub-projects.

JUnit 5 = JUnit Platform + JUnit Jupiter + JUnit Vintage

The JUnit Platform serves as a foundation for launching testing frameworks on the JVM. It also
defines the TestEngine API for developing a testing framework that runs on the platform.
Furthermore, the platform provides a Console Launcher to launch the platform from the command
line and the JUnit Platform Suite Engine for running a custom test suite using one or more test
engines on the platform. First-class support for the JUnit Platform also exists in popular IDEs (see
Intelli] IDEA, Eclipse, NetBeans, and Visual Studio Code) and build tools (see Gradle, Maven, and
Ant).

JUnit Jupiter is the combination of the programming model and extension model for writing tests
and extensions in JUnit 5. The Jupiter sub-project provides a TestEngine for running Jupiter based
tests on the platform.

JUnit Vintage provides a TestEngine for running JUnit 3 and JUnit 4 based tests on the platform. It
requires JUnit 4.12 or later to be present on the class path or module path.

Supported Java Versions

JUnit 5 requires Java 8 (or higher) at runtime. However, you can still test code that has been
compiled with previous versions of the JDK.

Getting Help

Ask JUnit 5 related questions on <a href="https://stackoverflow.com/questions/tagged/junit5">Stack
Overflow</a> or use the <a href="https://github.com/junit-team/junit-
framework/discussions/categories/q-a">Q&A category on GitHub Discussions</a>.

Getting Started

Downloading JUnit Artifacts

To find out what artifacts are available for download and inclusion in your project, refer to
Dependency Metadata. To set up dependency management for your build, refer to Build Support
and the Example Projects.


advanced-topics/launcher-api.pdf
attachment$api//org.junit.platform.engine/org/junit/platform/engine/TestEngine.html

JUnit 5 Features

To find out what features are available in JUnit 5 and how to use them, read the corresponding
sections of this User Guide, organized by topic.

Writing Tests in JUnit Jupiter

Migrating from JUnit 4 to JUnit Jupiter

Running Tests

Extension Model for JUnit Jupiter

Advanced Topics
o JUnit Platform Launcher API

o JUnit Platform Test Kit

Example Projects

To see complete, working examples of projects that you can copy and experiment with, the junit-
examples repository is a good place to start. The junit-examples repository hosts a collection of
example projects based on JUnit Jupiter, JUnit Vintage, and other testing frameworks. You’ll find
appropriate build scripts (e.g., build.gradle, pom.xml, etc.) in the example projects. The links below
highlight some of the combinations you can choose from.

* For Gradle and Java, check out the junit-jupiter-starter-gradle project.

* For Gradle and Kotlin, check out the junit-jupiter-starter-gradle-kotlin project.

» For Gradle and Groovy, check out the junit-jupiter-starter-gradle-groovy project.

* For Maven, check out the junit-jupiter-starter-maven project.

For Ant, check out the junit-jupiter-starter-ant project.


https://github.com/junit-team/junit-examples
https://github.com/junit-team/junit-examples
https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-gradle
https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-gradle-kotlin
https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-gradle-groovy
https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-maven
https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-ant

Writing Tests

The following example provides a glimpse at the minimum requirements for writing a test in JUnit
Jupiter. Subsequent sections of this chapter will provide further details on all available features.

A first test case
import static org.junit.jupiter.api.Assertions.assertEquals;
import example.util.Calculator;
import org.junit.jupiter.api.Test;
class MyFirstJUnitJupiterTests {
private final Calculator calculator = new Calculator();

@Test
void addition() {
assertEquals(2, calculator.add(1, 1));

Annotations

JUnit Jupiter supports the following annotations for configuring tests and extending the framework.

Unless otherwise stated, all core annotations are located in the org.junit.jupiter.api package in
the junit-jupiter-api module

@Test

Denotes that a method is a test method. Unlike JUnit 4’s @Test annotation, this annotation does
not declare any attributes, since test extensions in JUnit Jupiter operate based on their own
dedicated annotations. Such methods are inherited unless they are overridden.

@ParameterizedTest

Denotes that a method is a parameterized test. Such methods are inherited unless they are
overridden.

@RepeatedTest

Denotes that a method is a test template for a repeated test. Such methods are inherited unless
they are overridden.

@TestFactory

Denotes that a method is a test factory for dynamic tests. Such methods are inherited unless they
are overridden.


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/package-summary.html

@TestTemplate

Denotes that a method is a template for a test case designed to be invoked multiple times
depending on the number of invocation contexts returned by the registered providers. Such
methods are inherited unless they are overridden.

@TestClassOrder

Used to configure the test class execution order for @Nested test classes in the annotated test
class. Such annotations are inherited.

@TestMethodOrder

Used to configure the test method execution order for the annotated test class; similar to JUnit
4’s @FixMethodOrder. Such annotations are inherited.

@TestInstance

Used to configure the test instance lifecycle for the annotated test class. Such annotations are
inherited.

@DisplayName

Declares a custom display name for the test class or test method. Such annotations are not
inherited.

@DisplayNameGeneration

Declares a custom display name generator for the test class. Such annotations are inherited.

@BeforeEach

Denotes that the annotated method should be executed before each @Test, @RepeatedTest,
@ParameterizedTest, or @TestFactory method in the current class; analogous to JUnit 4’s @Before.
Such methods are inherited unless they are overridden.

@AfterEach

Denotes that the annotated method should be executed after each @Test, @RepeatedTest,
@ParameterizedTest, or @TestFactory method in the current class; analogous to JUnit 4’s @After.
Such methods are inherited unless they are overridden.

@BeforeAll

Denotes that the annotated method should be executed before all @Test, @RepeatedTest,
@ParameterizedTest, and @TestFactory methods in the current class; analogous to JUnit 4’s
@BeforeClass. Such methods are inherited unless they are overridden and must be static unless
the "per-class" test instance lifecycle is used.

@AfterAll

Denotes that the annotated method should be executed after all @Test, @RepeatedTest,
@ParameterizedTest, and @TestFactory methods in the current class; analogous to JUnit 4’s
@AfterClass. Such methods are inherited unless they are overridden and must be static unless
the "per-class” test instance lifecycle is used.

@ParameterizedClass

Denotes that the annotated class is a parameterized class. Such annotations are inherited.



@BeforeParameterizedClassInvocation

Denotes that the annotated method should be executed once before each invocation of a
parameterized class. Such methods are inherited unless they are overridden.

@AfterParameterizedClassInvocation

Denotes that the annotated method should be executed once after each invocation of a
parameterized class. Such methods are inherited unless they are overridden.

@ClassTemplate

Denotes that the annotated class is a template for a test class designed to be executed multiple
times depending on the number of invocation contexts returned by the registered providers.
Such annotations are inherited.

@Nested

Denotes that the annotated class is a non-static nested test class. On Java 8 through Java 15,
@BeforeAll and @AfterAll methods cannot be used directly in a @Nested test class unless the "per-
class" test instance lifecycle is used. Beginning with Java 16, @BeforeAll and @AfterAll methods
can be declared as static in a @Nested test class with either test instance lifecycle mode. Such
annotations are not inherited.

@Tag
Used to declare tags for filtering tests, either at the class or method level; analogous to test
groups in TestNG or Categories in JUnit 4. Such annotations are inherited at the class level but
not at the method level.

@Disabled

Used to disable a test class or test method; analogous to JUnit 4’s @Ignore. Such annotations are
not inherited.

@AutoClose

Denotes that the annotated field represents a resource that will be automatically closed after test
execution. Such fields are inherited.

@Timeout

Used to fail a test, test factory, test template, or lifecycle method if its execution exceeds a given
duration. Such annotations are inherited.

@TempDir

Used to supply a temporary directory via field injection or parameter injection in a test class
constructor, lifecycle method, or test method; located in the org.junit.jupiter.api.io package.
Such fields are inherited.

@ExtendWith

Used to register extensions declaratively. Such annotations are inherited.

@RegisterExtension

Used to register extensions programmatically via fields. Such fields are inherited.



a Some annotations may currently be experimental. Consult the table in
Experimental APIs for details.

Meta-Annotations and Composed Annotations

JUnit Jupiter annotations can be used as meta-annotations. That means that you can define your
own composed annotation that will automatically inherit the semantics of its meta-annotations.

For example, instead of copying and pasting @Tag("fast") throughout your code base (see Tagging
and Filtering), you can create a custom composed annotation named @Fast as follows. @Fast can then
be used as a drop-in replacement for @Tag("fast").

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.junit.jupiter.api.Tag;

@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(RetentionPolicy.RUNTIME)

@Tag("fast")

public @interface Fast {

}

The following @Test method demonstrates usage of the @Fast annotation.

@Fast

@Test

void myFastTest() {
/] ...

}

You can even take that one step further by introducing a custom @FastTest annotation that can be
used as a drop-in replacement for @Tag("fast") and @Test.

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Tag("fast")



@Test
public @interface FastTest {

}
JUnit automatically recognizes the following as a @Test method that is tagged with "fast".

@FastTest
void myFastTest() {
/] ...

}

Definitions

Platform Concepts

Container

a node in the test tree that contains other containers or tests as its children (e.g. a test class).

Test

a node in the test tree that verifies expected behavior when executed (e.g. a @Test method).

Jupiter Concepts

Lifecycle Method

any method that is directly annotated or meta-annotated with @BeforeAll, @AfterAll, @BeforeEach,
or @AfterEach.

Test Class

any top-level class, static member class, or gNested class that contains at least one test method,
i.e. a container. Test classes must not be abstract and must have a single constructor. Java record
classes are supported as well.

Test Method

any instance method that is directly annotated or meta-annotated with @Test, @RepeatedTest,
@ParameterizedTest, @TestFactory, or @TestTemplate. With the exception of @Test, these create a
container in the test tree that groups tests or, potentially (for @TestFactory), other containers.

Test Classes and Methods

Test methods and lifecycle methods may be declared locally within the current test class, inherited
from superclasses, or inherited from interfaces (see Test Interfaces and Default Methods). In
addition, test methods and lifecycle methods must not be abstract and must not return a value
(except @TestFactory methods which are required to return a value).

o Class and method visibility



Test classes, test methods, and lifecycle methods are not required to be public, but
they must not be private.

It is generally recommended to omit the public modifier for test classes, test
methods, and lifecycle methods unless there is a technical reason for doing so — for
example, when a test class is extended by a test class in another package. Another
technical reason for making classes and methods public is to simplify testing on
the module path when using the Java Module System.

Field and method inheritance

Fields in test classes are inherited. For example, a @TempDir field from a superclass
will always be applied in a subclass.

Test methods and lifecycle methods are inherited unless they are overridden
according to the visibility rules of the Java language. For example, a @Test method

e from a superclass will always be applied in a subclass unless the subclass explicitly
overrides the method. Similarly, if a package-private @Test method is declared in a
superclass that resides in a different package than the subclass, that @Test method
will always be applied in the subclass since the subclass cannot override a
package-private method from a superclass in a different package.

See also: Field and Method Search Semantics

The following test class demonstrates the use of @Test methods and all supported lifecycle methods.
For further information on runtime semantics, see Test Execution Order and Wrapping Behavior of
Callbacks.

A standard test class

import static org.junit.jupiter.api.Assertions.fail;
import static org.junit.jupiter.api.Assumptions.assumeTrue;

import org.junit.jupiter.api.AfterAll;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;

class StandardTests {

@BeforeAll
static void initA11() {
}

@BeforeEach
void init() {
}

@Test



void succeedingTest() {

}

@Test

void failingTest() {
fail("a failing test");

}

@Test
@Disabled("for demonstration purposes")
void skippedTest() {

// not executed

}

@Test

void abortedTest() {
assumeTrue("abc".contains("Z"));
fail("test should have been aborted");

}

@AfterEach
void tearDown() {

}

EAfterAll
static void tearDownAll() {
}

It is also possible to use Java record classes as test classes as illustrated by the following example.
A test class written as a Java record
import static org.junit.jupiter.api.Assertions.assertEquals;
import example.util.Calculator;
import org.junit.jupiter.api.Test;
record MyFirstJUnitJupiterRecordTests() {
@Test
void addition() {

assertEquals(2, new Calculator().add(1, 1));
Iy



Display Names

Test classes and test methods can declare custom display names via @DisplayName — with spaces,
special characters, and even emojis — that will be displayed in test reports and by test runners and
IDEs.

import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;

@DisplayName("A special test case")
class DisplayNameDemo {

@Test

@DisplayName("Custom test name containing spaces")
void testWithDisplayNameContainingSpaces() {

}

@Test

@DisplayName("0°0°00")

void testWithDisplayNameContainingSpecialCharacters() {
}

@Test
@DisplayName("0")

void testWithDisplayNameContainingEmoji() {
}

Display Name Generators

JUnit Jupiter supports custom display name generators that can be configured via the
@DisplayNameGeneration annotation.

Generators can be created by implementing the DisplayNameGenerator API. The following table lists
the default display name generators available in Jupiter.

DisplayNameGen Behavior

erator

Standard Matches the standard display name generation behavior in place since JUnit
Jupiter 5.0 was released.

Simple Extends the functionality of Standard by removing trailing parentheses for

methods with no parameters.
ReplaceUnderscores Replaces underscores with spaces.

IndicativeSentence Generates complete sentences by concatenating the names of the test and the
> enclosing classes.

10



o Values provided via @DisplayName annotations always take precedence over display
names generated by a DisplayNameGenerator.

The following example demonstrates the use of the ReplaceUnderscores display name
generator.

@DisplayNameGeneration(DisplayNameGenerator.ReplaceUnderscores.class)
class A_year_is_not_supported {

@Test
void if_it_is_zero() {

}

@DisplayName("A negative value for year is not supported by the leap year
computation.")

@ParameterizedTest(name = "For example, year {0} is not supported.”)

@ValueSource(ints = { -1, -4 })

void if_it_is_negative(int year) {

}

Running the above test class results in the following display names.

A year is not supported v

F— if it is zero v

L— A negative value for year is not supported by the leap year computation. v
— For example, year -1 is not supported. v
L— For example, year -4 is not supported. v

With the IndicativeSentences display name generator, you can customize the separator and the
underlying generator by using @IndicativeSentencesGeneration as shown in the following
example.

@IndicativeSentencesGeneration(separator = " -> ", generator = ReplaceUnderscores
.class)
class A_year_is_a_leap_year {

@Test
void if_it_is_divisible_by_4_but_not_by_100() {
}

@ParameterizedTest(name = "Year {0} is a leap year.")
@ValueSource(ints = { 2016, 2020, 2048 })
void if_it_is_one_of_the_following_years(int year) {

11



12

Running the above test class results in the following display names.

A year is a leap year v
— A year is a leap year -> if it is divisible by 4 but not by 100 v
L— A year is a leap year -> if it is one of the following years v
F— Year 2016 is a leap year. Vv
— Year 2020 is a leap year. v
L— Year 2048 is a leap year. Vv

With IndicativeSentences, you can optionally specify custom sentence fragments via the
@SentenceFragment annotation as demonstrated in the following example.

@SentenceFragment("A year is a leap year")
@IndicativeSentencesGeneration
class LeapYearTests {

@SentenceFragment("if it is divisible by 4 but not by 100")
@Test

void divisibleBy4ButNotBy100() {

}

@SentenceFragment("if it is one of the following years")
@ParameterizedTest(name = "{0}")

@ValueSource(ints = { 2016, 2020, 2048 })

void validlLeapYear(int year) {

}

Running the above test class results in the following display names.

A year is a leap year v
— A year is a leap year, if it is divisible by 4 but not by 100 v
— A year is a leap year, if it is one of the following years v
— 2016 v
— 2020 v
L— 2048 v



Setting the Default Display Name Generator

You can use the junit.jupiter.displayname.generator.default configuration parameter to specify
the fully qualified class name of the DisplayNameGenerator you would like to use by default. Just like
for display name generators configured via the @DisplayNameGeneration annotation, the supplied
class has to implement the DisplayNameGenerator interface. The default display name generator will
be used for all tests unless the @DisplayNameGeneration annotation is present on an enclosing test
class or test interface. Values provided via @DisplayName annotations always take precedence over
display names generated by a DisplayNameGenerator.

For example, to use the ReplaceUnderscores display name generator by default, you should set the
configuration parameter to the corresponding fully qualified class name (e.g., in
src/test/resources/junit-platform.properties):

junit.jupiter.displayname.generator.default = \
org.junit.jupiter.api.DisplayNameGenerator$ReplaceUnderscores

Similarly, you can specify the fully qualified name of any custom class that implements
DisplayNameGenerator.

In summary, the display name for a test class or method is determined according to the following
precedence rules:

1. value of the @DisplayName annotation, if present

2. by calling the DisplayNameGenerator specified in the @DisplayNameGeneration annotation, if
present

3. by calling the default DisplayNameGenerator configured via the configuration parameter, if
present

4. by calling org.junit.jupiter.api.DisplayNameGenerator.Standard

Assertions

JUnit Jupiter comes with many of the assertion methods that JUnit 4 has and adds a few that lend
themselves well to being used with Java 8 lambdas. All JUnit Jupiter assertions are static methods
in the org.junit.jupiter.api.Assertions class.

Assertion methods optionally accept the assertion message as their third parameter, which can be
either a String or a Supplier<String>.

When using a Supplier<String> (e.g., a lambda expression), the message is evaluated lazily. This can
provide a performance benefit, especially if message construction is complex or time-consuming, as
it is only evaluated when the assertion fails.

import static java.time.Duration.ofMillis;

import static java.time.Duration.ofMinutes;

import static org.junit.jupiter.api.Assertions.assertAll;
import static org.junit.jupiter.api.Assertions.assertEquals;

13


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html

import static org.junit.jupiter.api.Assertions.assertNotNull;

import static org.junit.jupiter.api.Assertions.assertThrows;

import static org.junit.jupiter.api.Assertions.assertTimeout;

import static org.junit.jupiter.api.Assertions.assertTimeoutPreemptively;
import static org.junit.jupiter.api.Assertions.assertTrue;

import java.util.concurrent.CountDownLatch;

import example.domain.Person;
import example.util.Calculator;

import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

class AssertionsDemo {
private final Calculator calculator = new Calculator();
private final Person person = new Person("Jane", "Doe");

@Test
void standardAssertions() {
assertEquals(2, calculator.add(1, 1));
assertEquals(4, calculator.multiply(2, 2),
"The optional failure message is now the last parameter");

// Lazily evaluates generateFailureMessage('a','b"').
assertTrue('a' < 'b", () -> generateFailureMessage('a','b"));

@Test
void groupedAssertions() {
// In a grouped assertion all assertions are executed, and all
// failures will be reported together.
assertAl11("person",
() -> assertEquals("Jane", person.getFirstName()),
() -> assertEquals("Doe", person.getlastName())
)i
}

@Test
void dependentAssertions() {
// Within a code block, if an assertion fails the
// subsequent code in the same block will be skipped.
assertAl1l("properties”,
0 ->{
String firstName = person.getFirstName();
assertNotNull(firstName);

// Executed only if the previous assertion is valid.
assertA11("first name",

14



() -> assertTrue(firstName.startsWith("J1")),
() -> assertTrue(firstName.endsWith("e"))
)i
s
0 ->{
// Grouped assertion, so processed independently
// of results of first name assertions.
String lastName = person.getlLastName();
assertNotNull(lastName);

// Executed only if the previous assertion is valid.
assertAl1("last name",

() -> assertTrue(lastName.startsWith("D")),

() -> assertTrue(lastName.endsWith("e"))

)i

)
}

@Test
void exceptionTesting() {
Exception exception = assertThrows(ArithmeticException.class, () ->
calculator.divide(1, 0));
assertEquals("/ by zero", exception.getMessage());

}

@Test
void timeoutNotExceeded() {
// The following assertion succeeds.
assertTimeout(ofMinutes(2), () -> {
// Perform task that takes less than 2 minutes.
1
}

@Test
void timeoutNotExceededWithResult() {
// The following assertion succeeds, and returns the supplied object.
String actualResult = assertTimeout(ofMinutes(2), () -> {
return "a result";

;s

assertEquals("a result", actualResult);

}

@Test

void timeoutNotExceededWithMethod() {
// The following assertion invokes a method reference and returns an object.
String actualGreeting = assertTimeout(ofMinutes(2), AssertionsDemo::greeting);
assertEquals("Hello, World!", actualGreeting);

}

@Test

15



16

void timeoutExceeded() {

//
//

The following assertion fails with an error message similar to:
execution exceeded timeout of 10 ms by 91 ms

assertTimeout(ofMillis(10), () -> {

b

@Test
void timeoutExceededWithPreemptiveTermination() {

//
//

// Simulate task that takes more than 10 ms.
Thread.sleep(100);

The following assertion fails with an error message similar to:
execution timed out after 10 ms

assertTimeoutPreemptively(ofMillis(10), () -> {

1)

// Simulate task that takes more than 10 ms.
new CountDownLatch(1).await();

private static String greeting() {
return "Hello, World!";

}

private static String generateFailureMessage(char a, char b) {
return "Assertion messages can be lazily evaluated -- "

+ "to avoid constructing complex messages unnecessarily." + (a < b);

Preemptive Timeouts with assertTimeoutPreemptively()

The various assertTimeoutPreemptively() methods in the Assertions class execute
the provided executable or supplier in a different thread than that of the calling
code. This behavior can lead to undesirable side effects if the code that is executed
within the executable or supplier relies on java.lang.ThreadlLocal storage.

One common example of this is the transactional testing support in the Spring
Framework. Specifically, Spring’s testing support binds transaction state to the
current thread (via a ThreadLocal) before a test method is invoked. Consequently, if
an executable or supplier provided to assertTimeoutPreemptively() invokes Spring-
managed components that participate in transactions, any actions taken by those
components will not be rolled back with the test-managed transaction. On the
contrary, such actions will be committed to the persistent store (e.g., relational
database) even though the test-managed transaction is rolled back.

Similar side effects may be encountered with other frameworks that rely on
Threadlocal storage.



Kotlin Assertion Support

JUnit Jupiter also comes with a few assertion methods that lend themselves well to being used in
Kotlin. All JUnit Jupiter Kotlin assertions are top-level functions in the org.junit.jupiter.api
package.

import example.domain.Person

import example.util.Calculator

import org.junit.jupiter.api.Assertions.assertEquals
import org.junit.jupiter.api.Assertions.assertTrue
import org.junit.jupiter.api.Tag

import org.junit.jupiter.api.Test

import org.junit.jupiter.api.assertAll

import org.junit.jupiter.api.assertDoesNotThrow
import org.junit.jupiter.api.assertInstanceOf

import org.junit.jupiter.api.assertNotNull

import org.junit.jupiter.api.assertThrows

import org.junit.jupiter.api.assertTimeout

import org.junit.jupiter.api.assertTimeoutPreemptively
import java.time.Duration

class KotlinAssertionsDemo {
private val person = Person("Jane", "Doe")
private val people = setOf(person, Person("John", "Doe"))

@Test
fun ‘exception absence testing'() {
val calculator = Calculator()
val result =
assertDoesNotThrow("Should not throw an exception") {
calculator.divide(@, 1)
}
assertEquals(@, result)

@Test
fun ‘expected exception testing'() {
val calculator = Calculator()
val exception =
assertThrows<ArithmeticException> ("Should throw an exception") {
calculator.divide(1, 0)
}

assertEquals("/ by zero", exception.message)

@Test
fun ‘grouped assertions‘() {
assertAl1(
"Person properties"”,
{ assertEquals("Jane", person.firstName) },

17


https://kotlinlang.org/

18

{ assertEquals("Doe", person.lastName) }

)
}
@Test
fun ‘grouped assertions from a stream'() {
assertAl1(
"People with first name starting with 1",
people
.stream()
.map {
// This mapping returns Stream<() -> Unit>
{ assertTrue(it.firstName.startsWith("1")) }
}
)
Iy
@Test
fun ‘grouped assertions from a collection'() {
assertAl11(
"People with last name of Doe",
people.map { { assertEquals("Doe", it.lastName) } }
)
}
@Test

fun ‘timeout not exceeded testing‘() {
val fibonacciCalculator = FibonacciCalculator()
val result =
assertTimeout(Duration.ofMillis(1000)) {
fibonacciCalculator.fib(14)

+
assertEquals(377, result)

}

@Test
fun ‘timeout exceeded with preemptive termination‘() {
// The following assertion fails with an error message similar to:
// execution timed out after 10 ms
assertTimeoutPreemptively(Duration.ofMillis(10)) {
// Simulate task that takes more than 10 ms.
Thread.sleep(100)

}
@Test

fun ‘assertNotNull with a smart cast'() {
val nullablePerson: Person? = person

assertNotNull(nullablePerson)



// The compiler smart casts nullablePerson to a non-nullable object.
// The safe call operator (?.) isn't required.
assertEquals(person.firstName, nullablePerson.firstName)
assertEquals(person.lastName, nullablePerson.lastName)

@Test
fun ‘assertInstanceOf with a smart cast‘() {
val maybePerson: Any = person

assertInstanceOf<Person>(maybePerson)

// The compiler smart casts maybePerson to a Person object,
// allowing to access the Person properties.
assertEquals(person.firstName, maybePerson.firstName)
assertEquals(person.lastName, maybePerson.lastName)

Third-party Assertion Libraries

Even though the assertion facilities provided by JUnit Jupiter are sufficient for many testing
scenarios, there are times when more power and additional functionality such as matchers are
desired or required. In such cases, the JUnit team recommends the use of third-party assertion
libraries such as Assert], Hamcrest, Truth, etc. Developers are therefore free to use the assertion
library of their choice.

For example, the combination of matchers and a fluent API can be used to make assertions more
descriptive and readable. However, JUnit Jupiter’s org.junit.jupiter.api.Assertions class does not
provide an assertThat() method like the one found in JUnit 4’s org.junit.Assert class which accepts
a Hamcrest Matcher. Instead, developers are encouraged to use the built-in support for matchers
provided by third-party assertion libraries.

The following example demonstrates how to use the assertThat() support from Hamcrest in a JUnit
Jupiter test. As long as the Hamcrest library has been added to the classpath, you can statically
import methods such as assertThat(), is(), and equalTo() and then use them in tests like in the
assertWithHamcrestMatcher () method below.

import static org.hamcrest.CoreMatchers.equalTo;
import static org.hamcrest.CoreMatchers.is;

import static org.hamcrest.MatcherAssert.assertThat;
import example.util.Calculator;

import org.junit.jupiter.api.Test;

class HamcrestAssertionsDemo {

private final Calculator calculator = new Calculator();

19


https://assertj.github.io/doc/
https://hamcrest.org/JavaHamcrest/
https://truth.dev/
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit4/javadoc/latest/org/junit/Assert.html#assertThat
https://junit.org/junit4/javadoc/latest/org/hamcrest/Matcher.html

@Test

void assertWithHamerestMatcher() {
assertThat(calculator.subtract(4, 1), is(equalTo(3)));

}

Naturally, legacy tests based on the JUnit 4 programming model can continue using
org.junit.Assert#assertThat.

Assumptions

Assumptions are typically used whenever it does not make sense to continue execution of a given
test — for example, if the test depends on something that does not exist in the current runtime
environment.

* When an assumption is valid, the assumption method does not throw an exception, and
execution of the test continues as usual.

* When an assumption is invalid, the assumption method throws an exception of type
org.opentest4j.TestAbortedException to signal that the test should be aborted instead of marked
as a failure.

JUnit Jupiter comes with a subset of the assumption methods that JUnit 4 provides and adds a few
that lend themselves well to being used with Java 8 lambda expressions and method references.

All JUnit Jupiter assumptions are static methods in the org.junit.jupiter.api.Assumptions class.

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assumptions.assumeTrue;
import static org.junit.jupiter.api.Assumptions.assumingThat;
import example.util.Calculator;
import org.junit.jupiter.api.Test;
class AssumptionsDemo {
private final Calculator calculator = new Calculator();
@Test
void testOnlyOnCiServer() {

assumeTrue("CI".equals(System.getenv("ENV")));
// remainder of test

@Test
void testOnlyOnDeveloperWorkstation() {
assumeTrue("DEV".equals(System.getenv("ENV")),

20


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Assumptions.html

() -> "Aborting test: not on developer workstation");
// remainder of test

@Test
void testInAllEnvironments() {
assumingThat("CI".equals(System.getenv("ENV")),
0 >A{
// perform these assertions only on the CI server
assertEquals(2, calculator.divide(4, 2));
3

// perform these assertions in all environments
assertEquals(42, calculator.multiply(6, 7));

It is also possible to use methods from JUnit 4’s org.junit.Assume class for

o assumptions. Specifically, JUnit Jupiter supports JUnit 4’s
AssumptionViolatedException to signal that a test should be aborted instead of
marked as a failure.

Exception Handling

JUnit Jupiter provides robust support for handling test exceptions. This includes the built-in
mechanisms for managing test failures due to exceptions, the role of exceptions in implementing
assertions and assumptions, and how to specifically assert non-throwing conditions in code.

Uncaught Exceptions

In JUnit Jupiter, if an exception is thrown from a test method, a lifecycle method, or an extension
and not caught within that test method, lifecycle method, or extension, the framework will mark
the test or test class as failed.

Failed assumptions deviate from this general rule.

(r) In contrast to failed assertions, failed assumptions do not result in a test failure;
- rather, a failed assumption results in a test being aborted.

See Assumptions for further details and examples.

In the following example, the failsDueToUncaughtException() method throws an
ArithmeticException. Since the exception is not caught within the test method, JUnit Jupiter will
mark the test as failed.

private final Calculator calculator = new Calculator();

21



@Test

void failsDueToUncaughtException() {
// The following throws an ArithmeticException due to division by
// zero, which causes a test failure.
calculator.divide(1, 0);

It’s important to note that specifying a throws clause in the test method has no

o effect on the outcome of the test. JUnit Jupiter does not interpret a throws clause as
an expectation or assertion about what exceptions the test method should throw. A
test fails only if an exception is thrown unexpectedly or if an assertion fails.

Failed Assertions

Assertions in JUnit Jupiter are implemented using exceptions. The framework provides a set of
assertion methods in the org.junit.jupiter.api.Assertions class, which throw AssertionError when
an assertion fails. This mechanism is a core aspect of how JUnit handles assertion failures as
exceptions. See the Assertions section for further information about JUnit Jupiter’s assertion
support.

Third-party assertion libraries may choose to throw an AssertionError to signal a
o failed assertion; however, they may also choose to throw different types of
exceptions to signal failures. See also: Third-party Assertion Libraries.

JUnit Jupiter itself does not differentiate between failed assertions (AssertionError)
and other types of exceptions. All uncaught exceptions lead to a test failure.
@ However, Integrated Development Environments (IDEs) and other tools may
et distinguish between these two types of failures by checking whether the thrown
exception is an instance of AssertionError.

In the following example, the failsDueToUncaughtAssertionError() method throws an
AssertionError. Since the exception is not caught within the test method, JUnit Jupiter will mark the
test as failed.

private final Calculator calculator = new Calculator();

@Test

void failsDueToUncaughtAssertionError() {
// The following incorrect assertion will cause a test failure.
// The expected value should be 2 instead of 99.
assertEquals(99, calculator.add(1, 1));

Asserting Expected Exceptions

JUnit Jupiter offers specialized assertions for testing that specific exceptions are thrown under

22



expected conditions. The assertThrows() and assertThrowsExactly() assertions are critical tools for
validating that your code responds correctly to error conditions by throwing the appropriate
exceptions.

Using assertThrows()

The assertThrows() method is used to verify that a particular type of exception is thrown during the
execution of a provided executable block. It not only checks for the type of the thrown exception
but also its subclasses, making it suitable for more generalized exception handling tests. The
assertThrows() assertion method returns the thrown exception object to allow performing
additional assertions on it.

@Test
void testExpectedExceptionIsThrown() {
// The following assertion succeeds because the code under assertion
// throws the expected IllegalArgumentException.
// The assertion also returns the thrown exception which can be used for
// further assertions like asserting the exception message.
I1legalArgumentException exception =
assertThrows(IllegalArgumentException.class, () -> {
throw new IllegalArgumentException("expected message");
});

assertEquals("expected message", exception.getMessage());

// The following assertion also succeeds because the code under assertion
// throws IllegalArqgumentException which is a subclass of RuntimeException.
assertThrows(RuntimeException.class, () -> {

throw new IllegalArgumentException("expected message");

;i

Using assertThrowsExactly()

The assertThrowsExactly() method is used when you need to assert that the exception thrown is
exactly of a specific type, not allowing for subclasses of the expected exception type. This is useful
when precise exception handling behavior needs to be validated. Similar to assertThrows(), the
assertThrowsExactly() assertion method also returns the thrown exception object to allow
performing additional assertions on it.

@Test
void testExpectedExceptionIsThrown() {
// The following assertion succeeds because the code under assertion throws
// I1legalArgumentException which is exactly equal to the expected type.
// The assertion also returns the thrown exception which can be used for
// further assertions like asserting the exception message.
I1legalArgumentException exception =
assertThrowsExactly(Il1legalArgumentException.class, () -> {
throw new IllegalArgumentException("expected message");

H;

23



assertEquals("expected message”, exception.getMessage());

// The following assertion fails because the assertion expects exactly
// RuntimeException to be thrown, not subclasses of RuntimeException.
assertThrowsExactly(RuntimeException.class, () -> {

throw new IllegalArgumentException("expected message");

1

Asserting That no Exception is Expected

Although any exception thrown from a test method will cause the test to fail, there are certain use
cases where it can be beneficial to explicitly assert that an exception is not thrown for a given code
block within a test method. The assertDoesNotThrow() assertion can be used when you want to
verify that a particular piece of code does not throw any exceptions.

@Test
void testExceptionIsNotThrown() {
assertDoesNotThrow(() -> {
shouldNotThrowException();

b
+
void shouldNotThrowException() {
}
Third-party assertion libraries often provide similar support. For example, Assert]
o has assertThatNoException().isThrownBy(() » --+). See also: Third-party Assertion

Libraries.

Disabling Tests

Entire test classes or individual test methods may be disabled via the @Disabled annotation, via one
of the annotations discussed in Conditional Test Execution, or via a custom ExecutionCondition.

When @Disabled is applied at the class level, all test methods within that class are automatically
disabled as well.

If a test method is disabled via @Disabled, that prevents execution of the test method and method-
level lifecycle callbacks such as @BeforeEach methods, @AfterEach methods, and corresponding
extension APIs. However, that does not prevent the test class from being instantiated, and it does
not prevent the execution of class-level lifecycle callbacks such as @BeforeAll methods, @AfterAll
methods, and corresponding extension APIs.

Here’s a @Disabled test class.
import org.junit.jupiter.api.Disabled;

24


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Disabled.html

import org.junit.jupiter.api.Test;

@Disabled("Disabled until bug #99 has been fixed")
class DisabledClassDemo {

@Test

void testWillBeSkipped() {
}

And here’s a test class that contains a @Disabled test method.

import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;

class DisabledTestsDemo {

@Disabled("Disabled until bug #42 has been resolved")

@Test
void testWillBeSkipped() {
}
@Test
void testWillBeExecuted() {
}
}
@Disabled may be declared without providing a reason; however, the JUnit team
recommends that developers provide a short explanation for why a test class or
(r) test method has been disabled. Consequently, the above examples both show the
- use of a reason—for example, @Disabled("Disabled until bug #42 has been

resolved"). Some development teams even require the presence of issue tracking
numbers in the reason for automated traceability, etc.

e @Disabled is not @Inherited. Consequently, if you wish to disable a class whose
superclass is @Disabled, you must redeclare @Disabled on the subclass.

Conditional Test Execution

The ExecutionCondition extension API in JUnit Jupiter allows developers to either enable or disable a
test class or test method based on certain conditions programmatically. The simplest example of
such a condition is the built-in DisabledCondition which supports the @Disabled annotation (see
Disabling Tests).

In addition to @Disabled, JUnit Jupiter also supports several other annotation-based conditions in

25


https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/DisabledCondition.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Disabled.html

the org.junit.jupiter.api.condition package that allow developers to enable or disable test classes
and test methods declaratively. If you wish to provide details about why they might be disabled,
every annotation associated with these built-in conditions has a disabledReason attribute available
for that purpose.

When multiple ExecutionCondition extensions are registered, a test class or test method is disabled
as soon as one of the conditions returns disabled. If a test class is disabled, all test methods within
that class are automatically disabled as well. If a test method is disabled, that prevents execution of
the test method and method-level lifecycle callbacks such as @BeforeEach methods, @AfterEach
methods, and corresponding extension APIs. However, that does not prevent the test class from
being instantiated, and it does not prevent the execution of class-level lifecycle callbacks such as
@BeforeAll methods, @AfterAll methods, and corresponding extension APIs.

See ExecutionCondition and the following sections for details.

Composed Annotations

Note that any of the conditional annotations listed in the following sections may

(r) also be used as a meta-annotation in order to create a custom composed

- annotation. For example, the @TestOnMac annotation in the @EnabledOnOs demo
shows how you can combine @Test and @EnabledOnOs in a single, reusable
annotation.

Conditional annotations in JUnit Jupiter are not @Inherited. Consequently, if you
o wish to apply the same semantics to subclasses, each conditional annotation must
be redeclared on each subclass.

Unless otherwise stated, each of the conditional annotations listed in the following
sections can only be declared once on a given test interface, test class, or test
method. If a conditional annotation is directly present, indirectly present, or meta-

A present multiple times on a given element, only the first such annotation
discovered by JUnit will be used; any additional declarations will be silently
ignored. Note, however, that each conditional annotation may be used in
conjunction with other conditional annotations in the
org.junit.jupiter.api.condition package.

Operating System and Architecture Conditions

A container or test may be enabled or disabled on a particular operating system, architecture, or
combination of both via the @EnabledOn0s and @Disabled0On0s annotations.

Conditional execution based on operating system

@Test

@EnabledOn0s(MAC)

void onlyOnMacOs() {
/] ...

26


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledOnOs.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledOnOs.html

@TestOnMac

void testOnMac() {
/] ...

}

@Test
©EnabledOn0s({ LINUX, MAC })
void onLinuxOrMac() {
/] ...
+

@Test

@DisabledOn0s(WINDOWS)

void notOnWindows() {
/] ...

}

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Test

©@EnabledOn0s(MAC)

@interface TestOnMac {

}

Conditional execution based on architecture

@Test
@EnabledOnOs(architectures = "aarch64")
void onAarch64() {
/] ...
}

@Test
@DisabledOnOs(architectures = "x86_64")
void notOnX86_64() {
/] ...
}

@Test
@EnabledOnOs(value = MAC, architectures = "aarch64")
void onNewMacs() {
/] ...
}

@Test
@DisabledOnOs(value = MAC, architectures = "aarch64")
void notOnNewMacs() {
/] ...
}



Java Runtime Environment Conditions

A container or test may be enabled or disabled on particular versions of the Java Runtime
Environment (JRE) via the @EnabledOnJre and @DisabledOnJre annotations or on a particular range of
versions of the JRE via the @EnabledForJreRange and @DisabledForJreRange annotations. The range
effectively defaults to JRE.JAVA_8 as the lower bound and JRE.OTHER as the upper bound, which
allows usage of half open ranges.

The following listing demonstrates the use of these annotations with predefined JRE enum
constants.

@Test

©EnabledOnJre(JAVA_17)

void onlyOnJaval7() {
/] ...

}

@Test
@EnabledOnJre({ JAVA_17, JAVA_21 })
void onJaval7And21() {

/] ...

}

@Test

@EnabledForJreRange(min

void fromJava9To11() {
/] ...

JAVA_9, max = JAVA_11)

}

@Test

@EnabledForJreRange(min

void onJava9AndHigher() {
/] ...

JAVA_9)

}

@Test
@EnabledForJreRange(max = JAVA_11)
void fromJava8To11() {
/] ...
}

@Test
@DisabledOnlre(JAVA_9)
void notOnJavad() {

/] ...

}

@Test
@DisabledForJreRange(min = JAVA_9, max = JAVA_11)
void notFromJava9Tol11() {

28


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledOnJre.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledOnJre.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledForJreRange.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledForJreRange.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/JRE.html

/] ...
}

@Test
@DisabledForJreRange(min = JAVA_9)
void notOnJava9AndHigher() {

/] ...

}

@Test
@DisabledForJreRange(max = JAVA_11)
void notFromJava8Tol11() {
/] ...
}

Since the enum constants defined in JRE are static for any given JUnit release, you might find that
you need to configure a Java version that is not supported by the JRE enum. For example, as of JUnit
Jupiter 5.12 the JRE enum defines JAVA_25 as the highest supported Java version. However, you may
wish to run your tests against later versions of Java. To support such use cases, you can specify
arbitrary Java versions via the versions attributes in @EnabledOnJre and @DisabledOnJre and via the
minVersion and maxVersion attributes in @EnabledForJreRange and @DisabledForJreRange.

The following listing demonstrates the use of these annotations with arbitrary Java versions.

@Test

©EnabledOnJre(versions

void onlyOnJava26() {
/] ...

26)

}

@Test
@EnabledOnJre(versions = { 25, 26 })
// Can also be expressed as follows.
// @EnabledOnJre(value = JAVA_25, versions = 26)
void onJava25And26() {
/] ...

}

@Test
@EnabledForJreRange(minVersion
void onJava26AndHigher() {

/] ...

26)

}

@Test
@EnabledForJreRange(minVersion = 25, maxVersion = 27)
// Can also be expressed as follows.
// @EnabledForJreRange(min = JAVA_25, maxVersion = 27)
void fromJava25To27() {

/] ...

29


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/JRE.html

}

@Test
@DisabledOnlre(versions = 26)
void notOnJava26() {
/] ...
}

@Test
@DisabledOnJre(versions = { 25, 26 })
// Can also be expressed as follows.
// @DisabledOn]re(value = JAVA_25, versions = 26)
void notOnJava25And26() {
/] ...

}

@Test

@DisabledForJreRange(minVersion

void notOnJava26AndHigher() {
/] ...

26)

}

@Test
@DisabledForJreRange(minVersion = 25, maxVersion = 27)
// Can also be expressed as follows.
// @DisabledForJreRange(min = JAVA_25, maxVersion = 27)
void notFromJava25To27() {

/] ...

}

Native Image Conditions

A container or test may be enabled or disabled within a GraalVM native image via the
@EnabledInNativelmage and @DisabledInNativeImage annotations. These annotations are typically
used when running tests within a native image using the Gradle and Maven plug-ins from the
GraalVM Native Build Tools project.

@Test

@EnabledInNativeImage

void onlyWithinNativeImage() {
/] ...

}

@Test

@DisabledInNativeImage

void neverWithinNativeImage() {
/] ...

}

30


https://www.graalvm.org/reference-manual/native-image/
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledInNativeImage.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledInNativeImage.html
https://graalvm.github.io/native-build-tools/latest/

System Property Conditions

A container or test may be enabled or disabled based on the value of the named JVM system property
via the @EnabledIfSystemProperty and @DisabledIfSystemProperty annotations. The value supplied
via the matches attribute will be interpreted as a regular expression.

@Test
@EnabledIfSystemProperty(named = "os.arch", matches = ".*64.*")
void onlyOn64BitArchitectures() {
/...
}

@Test
@DisabledIfSystemProperty(named = "ci-server", matches = "true")
void notOnCiServer() {
/] ...
}

As of JUnit Jupiter 5.6, 6EnabledIfSystemProperty and @DisabledIfSystemProperty are

repeatable annotations. Consequently, these annotations may be declared multiple

@ times on a test interface, test class, or test method. Specifically, these annotations

v will be found if they are directly present, indirectly present, or meta-present on a
given element.

Environment Variable Conditions

A container or test may be enabled or disabled based on the value of the named environment
variable from the underlying operating system via the @EnabledIfEnvironmentVariable and
@DisabledIfEnvironmentVariable annotations. The value supplied via the matches attribute will be
interpreted as a regular expression.

@Test
@EnabledIfEnvironmentVariable(named = "ENV", matches = "staging-server")
void onlyOnStagingServer() {

/] ...
}
@Test
@DisabledIfEnvironmentVariable(named = "ENV", matches = ".*development.*")
void notOnDeveloperWorkstation() {
/] ...
}
As of JUnit Jupiter 5.6, @EnabledIfEnvironmentVariable and
(r') @DisabledIfEnvironmentVariable are repeatable annotations. Consequently, these
- annotations may be declared multiple times on a test interface, test class, or test

method. Specifically, these annotations will be found if they are directly present,

31


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledIfSystemProperty.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledIfSystemProperty.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledIfSystemProperty.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledIfSystemProperty.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledIfEnvironmentVariable.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledIfEnvironmentVariable.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledIfEnvironmentVariable.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledIfEnvironmentVariable.html

indirectly present, or meta-present on a given element.

Custom Conditions

As an alternative to implementing an ExecutionCondition, a container or test may be enabled or
disabled based on a condition method configured via the @EnabledIf and @DisabledIf annotations. A
condition method must have a boolean return type and may accept either no arguments or a single
ExtensionContext argument.

The following test class demonstrates how to configure a local method named customCondition via
@EnabledIf and @DisabledIf.

@Test
@EnabledIf("customCondition")
void enabled() {

/] ...
}

@Test
@DisabledIf("customCondition")
void disabled() {

/] ...
+

boolean customCondition() {
return true;

}

Alternatively, the condition method can be located outside the test class. In this case, it must be
referenced by its fully qualified name as demonstrated in the following example.

package example;

import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.condition.EnabledIf;

class ExternalCustomConditionDemo {
@Test
@EnabledIf("example.ExternalCondition#customCondition")
void enabled() {

/] ...
}

}
class ExternalCondition {

static boolean customCondition() {

32


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/EnabledIf.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/condition/DisabledIf.html

return true;

There are several cases where a condition method would need to be static:

 when @EnabledIf or @DisabledIf is used at class level

e when @EnabledIf or @DisabledIf is used on a @ParameterizedTest or a
o @TestTemplate method

¢ when the condition method is located in an external class

In any other case, you can use either static methods or instance methods as
condition methods.

It is often the case that you can use an existing static method in a utility class as a
custom condition.

For example, java.awt.GraphicsEnvironment provides a public static boolean

isHeadless() method that can be used to determine if the current environment
(’7 does not support a graphical display. Thus, if you have a test that depends on
graphical support you can disable it when such support is unavailable as follows.

@DisabledIf(value = "java.awt.GraphicsEnvironment#isHeadless",
disabledReason = "headless environment")

Tagging and Filtering

Test classes and methods can be tagged via the @Tag annotation. Those tags can later be used to
filter test discovery and execution. Please refer to the Tags section for more information about tag
support in the JUnit Platform.

import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

@Tag("fast")
@Tag("model")
class TaggingDemo {

@Test

@Tag("taxes")

void testingTaxCalculation() {
}

33



G See Meta-Annotations and Composed Annotations for examples demonstrating
- how to create custom annotations for tags.

Test Execution Order

By default, test classes and methods will be ordered using an algorithm that is deterministic but
intentionally nonobvious. This ensures that subsequent runs of a test suite execute test classes and
test methods in the same order, thereby allowing for repeatable builds.

e See Definitions for a definition of test method and test class.

Method Order

Although true unit tests typically should not rely on the order in which they are executed, there are
times when it is necessary to enforce a specific test method execution order — for example, when
writing integration tests or functional tests where the sequence of the tests is important, especially
in conjunction with @TestInstance(Lifecycle.PER_CLASS).

To control the order in which test methods are executed, annotate your test class or test interface
with @TestMethodOrder and specify the desired MethodOrderer implementation. You can implement
your own custom MethodOrderer or use one of the following built-in MethodOrderer implementations.

* MethodOrderer.DisplayName: sorts test methods alphanumerically based on their display names
(see display name generation precedence rules)

* lMethodOrderer.MethodName: sorts test methods alphanumerically based on their names and formal
parameter lists

* MethodOrderer.OrderAnnotation: sorts test methods numerically based on values specified via the
@0rder annotation

* lMethodOrderer.Random: orders test methods pseudo-randomly and supports configuration of a
custom seed

* lMethodOrderer.Alphanumeric: sorts test methods alphanumerically based on their names and
formal parameter lists; deprecated in favor of MethodOrderer.MethodName, to be removed in 6.0

0 See also: Wrapping Behavior of Callbacks

The following example demonstrates how to guarantee that test methods are executed in the order
specified via the @0rder annotation.

import org.junit.jupiter.api.MethodOrderer.OrderAnnotation;
import org.junit.jupiter.api.Order;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.TestMethodOrder;

@TestMethodOrder (OrderAnnotation.class)
class OrderedTestsDemo {

34


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestMethodOrder.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.DisplayName.html
writing-tests/display-names.pdf#generator-precedence-rules
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.MethodName.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.OrderAnnotation.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Order.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.Random.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.Alphanumeric.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.MethodName.html

@Test
@0rder(1)
void nullValues() {
// perform assertions against null values

}

@Test
@0rder(2)
void emptyValues() {
// perform assertions against empty values

}

@Test
@0rder(3)
void validValues() {
// perform assertions against valid values

}

Setting the Default Method Orderer

You can use the junit.jupiter.testmethod.order.default configuration parameter to specify the
fully qualified class name of the MethodOrderer you would like to use by default. Just like for the
orderer configured via the @TestMethodOrder annotation, the supplied class has to implement the
MethodOrderer interface. The default orderer will be used for all tests unless the @TestMethodOrder
annotation is present on an enclosing test class or test interface.

For example, to use the MethodOrderer.OrderAnnotation method orderer by default, you should set
the configuration parameter to the corresponding fully qualified class name (e.g., in
src/test/resources/junit-platform.properties):

junit.jupiter.testmethod.order.default = \
org.junit.jupiter.api.MethodOrderer§OrderAnnotation

Similarly, you can specify the fully qualified name of any custom class that implements
MethodOrderer.

Class Order

Although test classes typically should not rely on the order in which they are executed, there are
times when it is desirable to enforce a specific test class execution order. You may wish to execute
test classes in a random order to ensure there are no accidental dependencies between test classes,
or you may wish to order test classes to optimize build time as outlined in the following scenarios.

* Run previously failing tests and faster tests first: "fail fast" mode

* With parallel execution enabled, schedule longer tests first: "shortest test plan execution
duration” mode

35


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestMethodOrder.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.OrderAnnotation.html

e Various other use cases

To configure test class execution order globally for the entire test suite, use the
junit.jupiter.testclass.order.default configuration parameter to specify the fully qualified class
name of the ClassOrderer you would like to use. The supplied class must implement the
ClassOrderer interface.

You can implement your own custom ClassOrderer or use one of the following built-in ClassOrderer
implementations.

* (lassOrderer.(ClassName: sorts test classes alphanumerically based on their fully qualified class
names

* (lassOrderer.DisplayName: sorts test classes alphanumerically based on their display names (see
display name generation precedence rules)

* (lassOrderer.OrderAnnotation: sorts test classes numerically based on values specified via the
@0rder annotation

* (lassOrderer.Random: orders test classes pseudo-randomly and supports configuration of a
custom seed

For example, for the @0rder annotation to be honored on test classes, you should configure the
(lassOrderer.OrderAnnotation class orderer using the configuration parameter with the
corresponding fully qualified class name (e.g., in src/test/resources/junit-platform.properties):

junit.jupiter.testclass.order.default = \
org.junit.jupiter.api.ClassOrderer§OrderAnnotation

The configured ClassOrderer will be applied to all top-level test classes (including static nested test
classes) and @Nested test classes.

Top-level test classes will be ordered relative to each other; whereas, @Nested test
o classes will be ordered relative to other @Nested test classes sharing the same
enclosing class.

To configure test class execution order locally for @Nested test classes, declare the @Test(lassOrder
annotation on the enclosing class for the @Nested test classes you want to order, and supply a class
reference to the ClassOrderer implementation you would like to use directly in the @TestClassOrder
annotation. The configured (lassOrderer will be applied recursively to @Nested test classes and their
@Nested test classes. Note that a local @TestClassOrder declaration always overrides an inherited
@TestClassOrder  declaration or a  C(ClassOrderer  configured globally via the
junit.jupiter.testclass.order.default configuration parameter.

The following example demonstrates how to guarantee that @Nested test classes are executed in the

order specified via the @0rder annotation.

import org.junit.jupiter.api.ClassOrderer;
import org.junit.jupiter.api.Nested;
import org.junit.jupiter.api.Order;

36


running-tests/configuration-parameters.pdf
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.ClassName.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.DisplayName.html
writing-tests/display-names.pdf#generator-precedence-rules
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.OrderAnnotation.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Order.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.Random.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.OrderAnnotation.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestClassOrder.html

import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.TestClassOrder;

@TestClassOrder(ClassOrderer.OrderAnnotation.class)
class OrderedNestedTestClassesDemo {

@Nested
@0rder(1)
class PrimaryTests {

@Test
void test1() {

}

@Nested
@0rder(2)
class SecondaryTests {

@Test
void test2() {

}

Test Instance Lifecycle

In order to allow individual test methods to be executed in isolation and to avoid unexpected side
effects due to mutable test instance state, JUnit creates a new instance of each test class before
executing each test method (see Definitions). This "per-method" test instance lifecycle is the default
behavior in JUnit Jupiter and is analogous to all previous versions of JUnit.

Please note that the test class will still be instantiated if a given test method is
disabled via a condition (e.g., @Disabled, @DisabledOn0Os, etc.) even when the "per-
method" test instance lifecycle mode is active.

If you would prefer that JUnit Jupiter execute all test methods on the same test instance, annotate
your test class with @TestInstance(Lifecycle.PER_CLASS). When using this mode, a new test instance
will be created once per test class. Thus, if your test methods rely on state stored in instance
variables, you may need to reset that state in @BeforeEach or @AfterEach methods.

The "per-class” mode has some additional benefits over the default "per-method" mode. Specifically,
with the "per-class” mode it becomes possible to declare @BeforeAll and @AfterAll on non-static
methods as well as on interface default methods. The "per-class" mode therefore also makes it
possible to use @BeforeAll and @AfterAll methods in @Nested test classes.

o Beginning with Java 16, @BeforeAll and @AfterAll methods can be declared as
static in @Nested test classes

37



If you are authoring tests using the Kotlin programming language, you may also find it easier to
implement non-static @BeforeAll and @AfterAll lifecycle methods as well as @MethodSource factory
methods by switching to the "per-class” test instance lifecycle mode.

Changing the Default Test Instance Lifecycle

If a test class or test interface is not annotated with @TestInstance, JUnit Jupiter will use a default
lifecycle mode. The standard default mode is PER_METHOD; however, it is possible to change the
default for the execution of an entire test plan. To change the default test instance lifecycle mode,
set the junit.jupiter.testinstance.lifecycle.default configuration parameter to the name of an
enum constant defined in TestInstance.Lifecycle, ignoring case. This can be supplied as a JVM
system property, as a configuration parameter in the LauncherDiscoveryRequest that is passed to the
Launcher, or via the JUnit Platform configuration file (see Configuration Parameters for details).

For example, to set the default test instance lifecycle mode to Lifecycle.PER_CLASS, you can start
your JVM with the following system property.

-Djunit.jupiter.testinstance.lifecycle.default=per_class

Note, however, that setting the default test instance lifecycle mode via the JUnit Platform
configuration file is a more robust solution since the configuration file can be checked into a
version control system along with your project and can therefore be used within IDEs and your
build software.

To set the default test instance lifecycle mode to Lifecycle.PER_CLASS via the JUnit Platform
configuration file, create a file named junit-platform.properties in the root of the class path (e.g.,
src/test/resources) with the following content.

junit.jupiter.testinstance.lifecycle.default = per_class

Changing the default test instance lifecycle mode can lead to unpredictable results
and fragile builds if not applied consistently. For example, if the build configures

A "per-class" semantics as the default but tests in the IDE are executed using "per-
method" semantics, that can make it difficult to debug errors that occur on the
build server. It is therefore recommended to change the default in the JUnit
Platform configuration file instead of via a JVM system property.

Nested Tests

@Nested tests give the test writer more capabilities to express the relationship among several groups
of tests. Such nested tests make use of Java’s nested classes and facilitate hierarchical thinking
about the test structure. Here’s an elaborate example, both as source code and as a screenshot of
the execution within an IDE.

Nested test suite for testing a stack
import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertThrows;

38



import

import
import

import
import
import
import

static org.junit.jupiter.api.Assertions.assertTrue;

java.util.EmptyStackException;
java.util.Stack;

org.junit.jupiter.api.BeforeEach;
org.junit.jupiter.api.DisplayName;
org.junit.jupiter.api.Nested;
org.junit.jupiter.api.Test;

@DisplayName("A stack")
class TestingAStackDemo {

Stack<Object> stack;

@Test
@DisplayName("is instantiated with new Stack()")
void isInstantiatedWithNew() {

}

new Stack<>();

@Nested
@DisplayName("when new")
class WhenNew {

@BeforeEach
void createNewStack() {
stack = new Stack<>();

}

@Test

@DisplayName("is empty")

void isEmpty() {
assertTrue(stack.isEmpty());

}

@Test

@DisplayName("throws EmptyStackException when popped")

void throwsExceptionWhenPopped() {
assertThrows(EmptyStackException.class, stack::pop);

}

@Test

@DisplayName("throws EmptyStackException when peeked")

void throwsExceptionWlhenPeeked() {
assertThrows(EmptyStackException.class, stack::peek);

}

@Nested
@DisplayName("after pushing an element")
class AfterPushing {

39



String anElement = "an element";

@BeforeEach
void pushAnElement() {
stack.push(anElement);

}

@Test

@DisplayName("it is no longer empty")

void isNotEmpty() {
assertFalse(stack.isEmpty());

}

@Test
@DisplayName("returns the element when popped and is empty")
void returnElementWhenPopped() {
assertEquals(anElement, stack.pop());
assertTrue(stack.isEmpty());
}

@Test
@DisplayName("returns the element when peeked but remains not empty")
void returnElementWhenPeeked() {
assertEquals(anElement, stack.peek());
assertFalse(stack.isEmpty());

When executing this example in an IDE, the test execution tree in the GUI will look similar to the
following image.

40



[ ] @® Run

Run: TestingAStackDemo a —
> v @ I 1= =T T+ QKX 2 2
. v A stack 101 ms
= is instantiated with new Stack() 19 ms
v when new 82ms |
throws EmptyStackException when peeked 19ms =3
throws EmptyStackException when popped 19ms
is empty 19 ms
v after pushing an element 25ms | W
returns the element when peeked but remains not empty 3ms
m returns the element when popped and is empty 3ms
it is no longer empty 19 ms
»

Executing a nested test in an IDE

In this example, preconditions from outer tests are used in inner tests by defining hierarchical
lifecycle methods for the setup code. For example, createNewStack() is a @BeforeEach lifecycle
method that is used in the test class in which it is defined and in all levels in the nesting tree below
the class in which it is defined.

The fact that setup code from outer tests is run before inner tests are executed gives you the ability
to run all tests independently. You can even run inner tests alone without running the outer tests,
because the setup code from the outer tests is always executed.

Only non-static nested classes (i.e. inner classes) can serve as @Nested test classes.
Nesting can be arbitrarily deep, and those inner classes are subject to full lifecycle
support with one exception: @BeforeAll and @AfterAll methods do not work by
default. The reason is that Java does not allow static members in inner classes

o prior to Java 16. However, this restriction can be circumvented by annotating a
@Nested test class with @TestInstance(Lifecycle.PER_CLASS) (see Test Instance
Lifecycle). If you are using Java 16 or higher, @BeforeAll and @AfterAll methods
can be declared as static in @Nested test classes, and this restriction no longer
applies.

Interoperability

@Nested may be combined with @ParameterizedClass in which case the nested test class is
parameterized.

The following example illustrates how to combine @Nested with @EParameterizedClass and
@ParameterizedTest.

41



@Execution(SAME_THREAD)

@ParameterizedClass

@ValueSource(strings = { "apple", "banana" })
class FruitTests {

@Parameter
String fruit;

@Nested

@ParameterizedClass
@ValueSource(ints = { 23, 42 })
class QuantityTests {

@Parameter
int quantity;

@ParameterizedTest

@ValueSource(strings = { "PT1H", "PT2H" })

void test(Duration duration) {
assertFruit(fruit);
assertQuantity(quantity);
assertFalse(duration.isNegative());

Executing the above test class yields the following output:

FruitTests v
— [1] fruit=apple v
| L— QuantityTests v
| F— [1] quantity=23 v
| | L— test(Duration) v
| | F— [1] duration=PT1H v
| | L— [2] duration=PT2H v
| L— [2] quantity=42 v
| L— test(Duration) v
| F— [1] duration=PT1H v
| L— [2] duration=PT2H v
L— [2] fruit=banana v
L— QuantityTests v
F— [1] quantity=23 v
| — test(Duration) v
| F— [1] duration=PT1H v
| L— [2] duration=PT2H v
L— [2] quantity=42 v
L— test(Duration) v
F— [1] duration=PT1H v

42



L— [2] duration=PT2H v

Dependency Injection for Constructors and Methods

In all prior JUnit versions, test constructors or methods were not allowed to have parameters (at
least not with the standard Runner implementations). As one of the major changes in JUnit Jupiter,
both test constructors and methods are now permitted to have parameters. This allows for greater
flexibility and enables Dependency Injection for constructors and methods.

ParameterResolver defines the API for test extensions that wish to dynamically resolve parameters at
runtime. If a test class constructor, a test method, or a lifecycle method (see Definitions) accepts a
parameter, the parameter must be resolved at runtime by a registered ParameterResolver.

There are currently three built-in resolvers that are registered automatically.

» TestInfoParameterResolver: if a constructor or method parameter is of type TestInfo, the
TestInfoParameterResolver will supply an instance of TestInfo corresponding to the current
container or test as the value for the parameter. The TestInfo can then be used to retrieve
information about the current container or test such as the display name, the test class, the test
method, and associated tags. The display name is either a technical name, such as the name of
the test class or test method, or a custom name configured via @DisplayName.

TestInfo acts as a drop-in replacement for the TestName rule from JUnit 4. The following
demonstrates how to have TestInfo injected into a @BeforeAll method, test class constructor,
@BeforeEach method, and @Test method.

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;

import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Tag;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.TestInfo;

@DisplayName("TestInfo Demo")
class TestInfoDemo {

@BeforeAll
static void beforeAll(TestInfo testInfo) {
assertEquals("TestInfo Demo", testInfo.getDisplayName());

}

TestInfoDemo(TestInfo testInfo) {
String displayName = testInfo.getDisplayName();
assertTrue(displayName.equals("TEST 1") || displayName.equals("test2()"));

43


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html
https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/TestInfoParameterResolver.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestInfo.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestInfo.html

@BeforeEach

void init(TestInfo testInfo) {
String displayName = testInfo.getDisplayName();
assertTrue(displayName.equals("TEST 1") || displayName.equals("test2()"));

@Test

@DisplayName("TEST 1")

@Tag("my-tag")

void test1(TestInfo testInfo) {
assertEquals("TEST 1", testInfo.getDisplayName());
assertTrue(testInfo.getTags().contains("my-tag"));

@Test
void test2() {
}

* RepetitionExtension: if a method parameter in a @RepeatedTest, @BeforeEach, or @AfterEach

method is of type RepetitionInfo, the RepetitionExtension will supply an instance of
RepetitionInfo. RepetitionInfo can then be used to retrieve information about the current
repetition, the total number of repetitions, the number of repetitions that have failed, and the
failure threshold for the corresponding @RepeatedTest. Note, however, that RepetitionExtension
is not registered outside the context of a @RepeatedTest. See Repeated Test Examples.

* TestReporterParameterResolver: if a constructor or method parameter is of type TestReporter, the

44

TestReporterParameterResolver will supply an instance of TestReporter. The TestReporter can be
used to publish additional data about the current test run or attach files to it. The data can be
consumed in a TestExecutionlListener via the reportingEntryPublished() or fileEntryPublished()
method, respectively. This allows them to be viewed in IDEs or included in reports.

In JUnit Jupiter you should use TestReporter where you used to print information to stdout or
stderr in JUnit 4. Using @RunWith(JUnitPlatform.class) will output all reported entries to stdout.
In addition, some IDEs print report entries to stdout or display them in the user interface for
test results.

class TestReporterDemo {

@Test
void reportSingleValue(TestReporter testReporter) {
testReporter.publishEntry("a status message");

}

@Test

void reportKeyValuePair(TestReporter testReporter) {
testReporter.publishEntry("a key", "a value");

}


https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/RepetitionExtension.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/RepetitionInfo.html
https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/TestReporterParameterResolver.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestReporter.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html

@Test

void reportMultipleKeyValuePairs(TestReporter testReporter) {
Map<String, String> values = new HashMap<>();
values.put("user name", "dk38");
values.put("award year", "1974");

testReporter.publishEntry(values);
}

@Test
void reportFiles(TestReporter testReporter, @TempDir Path tempDir) throws
Exception {

testReporter.publishFile("test1.txt", MediaType.TEXT_PLAIN_UTF_8,
file -> Files.write(file, singletonList("Test 1")));

Path existingFile = Files.write(tempDir.resolve("test2.txt"), singletonList
("Test 2"));
testReporter.publishFile(existingFile, MediaType.TEXT_PLAIN_UTF_8);

testReporter.publishDirectory("test3", dir -> {
Files.write(dir.resolve("nestedl.txt"), singletonList("Nested content

1"));
Files.write(dir.resolve("nested2.txt"), singletonList("Nested content
2"));
b
Path existingDir = Files.createDirectory(tempDir.resolve("test4"));
Files.write(existingDir.resolve("nestedl.txt"), singletonList("Nested content
1"));
Files.write(existingDir.resolve("nested2.txt"), singletonList("Nested content
2"));
testReporter.publishDirectory(existingDir);
}
}
o Other parameter resolvers must be explicitly enabled by registering appropriate
extensions via @ExtendWith.

Check out the RandomParametersExtension for an example of a custom ParameterResolver. While not
intended to be production-ready, it demonstrates the simplicity and expressiveness of both the
extension model and the parameter resolution process. MyRandomParametersTest demonstrates how
to inject random values into @Test methods.

@ExtendWith(RandomParametersExtension.class)
class MyRandomParametersTest {

@Test
void injectsInteger(@Random int i, @Random int j) {

45


https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-extensions/src/main/java/com/example/random/RandomParametersExtension.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html

assertNotEquals(i, j);
}

@Test

void injectsDouble(@Random double d) {
assertEquals(0.0, d, 1.9);

}

For real-world use cases, check out the source code for the MockitoExtension and the
SpringExtension

When the type of the parameter to inject is the only condition for your ParameterResolver, you can
use the generic TypeBasedParameterResolver base class. The supportsParameters method is
implemented behind the scenes and supports parameterized types.

Test Interfaces and Default Methods

JUnit Jupiter allows @Test, @RepeatedTest, @ParameterizedTest, @TestFactory, @TestTemplate,
@BeforeEach, and @AfterEach to be declared on interface default methods. @BeforeAll and @AfterAll
can either be declared on static methods in a test interface or on interface default methods if the
test interface or test class is annotated with @TestInstance(Lifecycle.PER_CLASS) (see Test Instance
Lifecycle). Here are some examples.

@TestInstance(Lifecycle.PER_CLASS)
interface TestlLifecycleLogger {

static final Logger logger = Logger.getlLogger(TestLifecyclelLogger.class.
getName());

@BeforeAll
default void beforeAllTests() {
logger.info("Before all tests");

}

@AfterAll

default void afterAllTests() {
logger.info("After all tests");

}

@BeforeEach
default void beforeEachTest(TestInfo testInfo) {
logger.info(() -> String.format("About to execute [%s]",
testInfo.getDisplayName()));

}

@AfterEach
default void afterEachTest(TestInfo testInfo) {

46


https://github.com/mockito/mockito/blob/release/2.x/subprojects/junit-jupiter/src/main/java/org/mockito/junit/jupiter/MockitoExtension.java
https://github.com/spring-projects/spring-framework/tree/HEAD/spring-test/src/main/java/org/springframework/test/context/junit/jupiter/SpringExtension.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html
https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-api/src/main/java/org/junit/jupiter/api/extension/support/TypeBasedParameterResolver.java

logger.info(() -> String.format("Finished executing [%s]",
testInfo.getDisplayName()));

interface TestInterfaceDynamicTestsDemo {

@TestFactory
default Stream<DynamicTest> dynamicTestsForPalindromes() {
return Stream.of("racecar", "radar", "mom", "dad")
.map(text -> dynamicTest(text, () -> assertTrue(isPalindrome(text))));

@ExtendWith and @Tag can be declared on a test interface so that classes that implement the interface
automatically inherit its tags and extensions. See Before and After Test Execution Callbacks for the
source code of the TimingExtension.

@Tag("timed")
@ExtendWith(TimingExtension.class)
interface TimeExecutionLogger {

}

In your test class you can then implement these test interfaces to have them applied.

class TestInterfaceDemo implements TestLifecyclelogger,
TimeExecutionLogger, TestInterfaceDynamicTestsDemo {

@Test
void isEqualValue() {

assertEquals(1, "a".length(), "is always equal");
}

Running the TestInterfaceDemo results in output similar to the following:

INFO example.TestLifecycleLogger - Before all tests

INFO example.TestLifecycleLogger - About to execute [dynamicTestsForPalindromes()]
INFO example.TimingExtension - Method [dynamicTestsForPalindromes] took 19 ms.

INFO example.TestLifecycleLogger - Finished executing [dynamicTestsForPalindromes()]
INFO example.TestLifecycleLogger - About to execute [isEqualValue()]

INFO example.TimingExtension - Method [isEqualValue] took 1 ms.

INFO example.TestLifecycleLogger - Finished executing [isEqualValue()]

47



INFO example.TestLifecycleLogger - After all tests

Another possible application of this feature is to write tests for interface contracts. For example,
you can write tests for how implementations of Object.equals or Comparable.compareTo should
behave as follows.

public interface Testable<T> {

T createValue();

public interface EqualsContract<T> extends Testable<T> {
T createNotEqualValue();

@Test

default void valueEqualsItself() {
T value = createValue();
assertEquals(value, value);

}

@Test

default void valueDoesNotEqualNull() {
T value = createValue();
assertNotEquals(null, value);

}

@Test

default void valueDoesNotEqualDifferentValue() {
T value = createValue();
T differentValue = createNotEqualValue();
assertNotEquals(value, differentValue);
assertNotEquals(differentValue, value);

public interface ComparableContract<T extends Comparable<T>> extends Testable<T> {
T createSmallerValue();
@Test
default void returnsZeroWhenComparedToItself() {

T value = createValue();
assertEquals(@, value.compareTo(value));

48



@Test

default void returnsPositiveNumberWhenComparedToSmallerValue() {
T value = createValue();
T smallerValue = createSmallerValue();
assertTrue(value.compareTo(smallerValue) > 0);

@Test

default void returnsNegativeNumberWhenComparedToLargerValue() {
T value = createValue();
T smallerValue = createSmallerValue();
assertTrue(smallerValue.compareTo(value) < @);

In your test class you can then implement both contract interfaces thereby inheriting the
corresponding tests. Of course you’ll have to implement the abstract methods.

class StringTests implements ComparableContract<String>, EqualsContract<String> {

@0verride
public String createValue() {
return "banana";

}

@0verride
public String createSmallerValue() {
return "apple"; // 'a' < 'b' in "banana"

}

@Override
public String createNotEqualValue() {
return "cherry";

}

o The above tests are merely meant as examples and therefore not complete.

Repeated Tests

JUnit Jupiter provides the ability to repeat a test a specified number of times by annotating a
method with @RepeatedTest and specifying the total number of repetitions desired. Each invocation
of a repeated test behaves like the execution of a regular @Test method with full support for the
same lifecycle callbacks and extensions.

49



The following example demonstrates how to declare a test named repeatedTest() that will be
automatically repeated 10 times.

@RepeatedTest(10)

void repeatedTest() {
/] ...

}

Since JUnit Jupiter 5.10, @RepeatedTest can be configured with a failure threshold which signifies the
number of failures after which remaining repetitions will be automatically skipped. Set the
failureThreshold attribute to a positive number less than the total number of repetitions in order to
skip the invocations of remaining repetitions after the specified number of failures has been
encountered.

For example, if you are using @RepeatedTest to repeatedly invoke a test that you suspect to be flaky,
a single failure is sufficient to demonstrate that the test is flaky, and there is no need to invoke the
remaining repetitions. To support that specific use case, set failureThreshold = 1. You can
alternatively set the threshold to a number greater than 1 depending on your use case.

By default, the failureThreshold attribute is set to Integer.MAX_VALUE, signaling that no failure
threshold will be applied, which effectively means that the specified number of repetitions will be
invoked regardless of whether any repetitions fail.

If the repetitions of a @RepeatedTest method are executed in parallel, no guarantees

A can be made regarding the failure threshold. It is therefore recommended that a
@RepeatedTest method be annotated with @Execution(SAME_THREAD) when parallel
execution is configured. See Parallel Execution for further details.

In addition to specifying the number of repetitions and failure threshold, a custom display name
can be configured for each repetition via the name attribute of the @RepeatedTest annotation.
Furthermore, the display name can be a pattern composed of a combination of static text and
dynamic placeholders. The following placeholders are currently supported.

» {displayName}: display name of the @RepeatedTest method
» {currentRepetition}: the current repetition count

» {totalRepetitions}: the total number of repetitions

The default display name for a given repetition is generated based on the following pattern:
"repetition {currentRepetition} of {totalRepetitions}".Thus, the display names for individual
repetitions of the previous repeatedTest() example would be: repetition 1 of 10, repetition 2 of
10, etc.If you would like the display name of the @RepeatedTest method included in the name of each
repetition, you can define your own custom pattern or use the predefined
RepeatedTest.LONG_DISPLAY_NAME pattern.The latter is equal to "{displayName} :: repetition
{currentRepetition} of {totalRepetitions}" which results in display names for individual
repetitions like repeatedTest() :: repetition 1 of 10, repeatedTest() :: repetition 2 of 10, etc.

In order to retrieve information about the current repetition, the total number of repetitions, the

50



number of repetitions that have failed, and the failure threshold, a developer can choose to have an
instance of RepetitionInfo injected into a @RepeatedTest, @BeforeEach, or @AfterEach method.

Repeated Test Examples

The RepeatedTestsDemo class at the end of this section demonstrates several examples of repeated
tests.

The repeatedTest() method is identical to the example from the previous section; whereas,
repeatedTestWithRepetitionInfo() demonstrates how to have an instance of RepetitionInfo injected
into a test to access the total number of repetitions for the current repeated test.

repeatedTestWithFailureThreshold() demonstrates how to set a failure threshold and simulates an
unexpected failure for every second repetition.The resulting behavior can be viewed in the
Consolelauncher output at the end of this section.

The next two methods demonstrate how to include a custom @DisplayName for the @RepeatedTest
method in the display name of each repetition. customDisplayName() combines a custom display
name with a custom pattern and then uses TestInfo to verify the format of the generated display
name. Repeat! is the {displayName} which comes from the @DisplayName declaration, and 1/1 comes
from {currentRepetition}/{totalRepetitions}.In contrast, customDisplayNameWithLongPattern() uses
the aforementioned predefined RepeatedTest.LONG_DISPLAY_NAME pattern.

repeatedTestInGerman() demonstrates the ability to translate display names of repeated tests into
foreign languages —in this case German, resulting in names for individual repetitions such as:
Wiederholung 1 von 5, Wiederholung 2 von 5, etc.

Since the beforeEach() method is annotated with @BeforeEach it will get executed before each
repetition of each repeated test. By having the TestInfo and RepetitionInfo injected into the
method, we see that it’s possible to obtain information about the currently executing repeated test.
Executing RepeatedTestsDemo with the INFO log level enabled results in the following output.

INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition
INFO: About to execute repetition

of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
of 10 for repeatedTest
0 of 10 for repeatedTest

W N = U1 WN =2 2 O 00 Nl bW N =

INFO: About to execute repetition 1 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 2 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 3 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 4 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 5 of 5 for repeatedTestWithRepetitionInfo
INFO: About to execute repetition 1 of 8 for repeatedTestWithFailureThreshold
INFO: About to execute repetition 2 of 8 for repeatedTestWithFailureThreshold
INFO: About to execute repetition 3 of 8 for repeatedTestWithFailureThreshold

31


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/RepetitionInfo.html

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

impo
impo
impo
impo
impo
impo
impo

impo

clas

32

About to execute repetition 4 of 8 for repeatedTestWithFailureThreshold
About to execute repetition 1 of 1 for customDisplayName

About to execute repetition 1 of 1 for customDisplayNameWithLongPattern
About to execute repetition 1 of 5 for repeatedTestInGerman

About to execute repetition 2 of 5 for repeatedTestInGerman

About to execute repetition 3 of 5 for repeatedTestInGerman

About to execute repetition 4 of 5 for repeatedTestInGerman

About to execute repetition 5 of 5 for repeatedTestInGerman

rt static org.junit.jupiter.api.Assertions.assertEquals;
rt static org.junit.jupiter.api.Assertions.fail;

rt java.util.logging.Logger;

rt org.junit.jupiter.api.BeforeEach;

rt org.junit.jupiter.api.DisplayName;

rt org.junit.jupiter.api.RepeatedTest;
rt org.junit.jupiter.api.RepetitionInfo;
rt org.junit.jupiter.api.TestInfo;

s RepeatedTestsDemo {
private Logger logger = // ...

@BeforeEach

void beforeEach(TestInfo testInfo, RepetitionInfo repetitionInfo) {
int currentRepetition = repetitionInfo.getCurrentRepetition();
int totalRepetitions = repetitionInfo.getTotalRepetitions();
String methodName = testInfo.getTestMethod().get().getName();

logger.info(String.format("About to execute repetition %d of %d for %s", //

currentRepetition, totalRepetitions, methodName));

}

@RepeatedTest(10)

void repeatedTest() {
/] ...

}

@RepeatedTest(5)
void repeatedTestWithRepetitionInfo(RepetitionInfo repetitionInfo) {
assertEquals(5, repetitionInfo.getTotalRepetitions());

}

@RepeatedTest(value = 8, failureThreshold = 2)
void repeatedTestWithFailureThreshold(RepetitionInfo repetitionInfo) {
// Simulate unexpected failure every second repetition
if (repetitionInfo.getCurrentRepetition() % 2 == 0) {
fail("Boom!");
}



@RepeatedTest(value = 1, name = "{displayName}
{currentRepetition}/{totalRepetitions}")
@DisplayName("Repeat!")
void customDisplayName(TestInfo testInfo) {
assertEquals("Repeat! 1/1", testInfo.getDisplayName());
}

@RepeatedTest(value = 1, name = RepeatedTest.LONG_DISPLAY_NAME)

@DisplayName("Details...")

void customDisplayNamelWlithLongPattern(TestInfo testInfo) {
assertbEquals("Details... :: repetition 1 of 1", testInfo.getDisplayName());

}

@RepeatedTest(value = 5, name = "Wiederholung {currentRepetition} von
{totalRepetitions}")
void repeatedTestInGerman() {
/] ...
}

When using the ConsolelLauncher with the unicode theme enabled, execution of RepeatedTestsDemo
results in the following output to the console.

— RepeatedTestsDemo v
— repeatedTest() v
— repetition
— repetition
— repetition 3 of 10
— repetition 4 of 10

1 of 10
2
3
4
— repetition 5 of 10
6
Y
8

of 10

— repetition 6 of 10
— repetition 7 of 10
— repetition 8 of 10
— repetition 9 of 10
L— repetition 10 of 10 v
repeatedTestWithRepetitionInfo(RepetitionInfo) v
— repetition 1 of 5 v
— repetition 2 of 5 v
— repetition 3 of 5 v
— repetition 4 of 5 v
L— repetition 5 of 5 v
repeatedTestWithFailureThreshold(RepetitionInfo) v
— repetition 1 of 8 v
— repetition 2 of 8 0 Boom!
— repetition 3 of 8 v
— repetition 4 of 8 0 Boom!
5
6

SSSSS<<<KKKK

— repetition 5 of 8 0 Failure threshold [2] exceeded

|
!
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
| — repetition 6 of 8 0 Failure threshold [2] exceeded

—

33



|  F— repetition 7 of 8 0 Failure threshold [2] exceeded

| L— repetition 8 of 8 0 Failure threshold [2] exceeded

— Repeat! v

|  L— Repeat! 1/1 v

F— Details... v

|  L— Details... :: repetition 1 of 1 v

L— repeatedTestInGerman() v
— Wiederholung 1 von
— Wiederholung 2 von
— Wiederholung 3 von
— Wiederholung 4 von
L— Wiederholung 5 von

[CINC, T, INC, [T,
SRS

Parameterized Classes and Tests

Parameterized tests make it possible to run a test method multiple times with different arguments.
They are declared just like regular @Test methods but use the @ParameterizedTest annotation
instead.

Parameterized classes make it possible to run all tests in a test class, including Nested Tests,
multiple times with different arguments. They are declared just like regular test classes and may
contain any supported test method type (including @ParameterizedTest) but annotated with the
@ParameterizedClass annotation.

Parameterized classes are currently an experimental feature. You’re invited to give
A it a try and provide feedback to the JUnit team so they can improve and eventually
promote this feature.

Regardless of whether you are parameterizing a test method or a test class, you must declare at
least one source that will provide the arguments for each invocation and then consume the
arguments in the parameterized method or class, respectively.

The following example demonstrates a parameterized test that uses the @ValueSource annotation to
specify a String array as the source of arguments.

@ParameterizedTest

@ValueSource(strings = { "racecar", "radar", "able was I ere I saw elba" })

void palindromes(String candidate) {
assertTrue(StringUtils.isPalindrome(candidate));

}

When executing the above parameterized test method, each invocation will be reported separately.
For instance, the ConsoleLauncher will print output similar to the following.

palindromes(String) v
— [1] candidate=racecar v
F— [2] candidate=radar v

54


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedTest.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedClass.html

L— [3] candidate=able was I ere I saw elba v

The same @ValueSource annotation can be used to specify the source of arguments for a
@Parameterized(lass.

@ParameterizedClass
@ValueSource(strings = { "racecar", "radar", "able was I ere I saw elba" })
class PalindromeTests {

@Parameter
String candidate;

@Test
void palindrome() {
assertTrue(StringUtils.isPalindrome(candidate));

}

@Test

void reversePalindrome() {
String reverseCandidate = new StringBuilder(candidate).reverse().toString();
assertTrue(StringUtils.isPalindrome(reverseCandidate));

When executing the above parameterized test class, each invocation will be reported separately.
For instance, the ConsoleLauncher will print output similar to the following.

PalindromeTests v

F— [1] candidate=racecar v

|  F— palindrome() v

| — reversePalindrome() v

— [2] candidate=radar v

| |— palindrome() v

| — reversePalindrome() v

L— [3] candidate=able was I ere I saw elba v
— palindrome() v
L— reversePalindrome() v

Required Setup

In order to use parameterized classes or tests you need to add a dependency on the junit-jupiter-
params artifact. Please refer to Dependency Metadata for details.

Consuming Arguments

55



Parameterized Tests

Parameterized test methods consume arguments directly from the configured source (see Sources
of Arguments) following a one-to-one correlation between argument source index and method
parameter index (see examples in @CsvSource). However, a parameterized test method may also
choose to aggregate arguments from the source into a single object passed to the method (see
Argument Aggregation). Additional arguments may also be provided by a ParameterResolver (e.g., to
obtain an instance of TestInfo, TestReporter, etc.). Specifically, a parameterized test method must
declare formal parameters according to the following rules.

» Zero or more indexed parameters must be declared first.
» Zero or more aggregators must be declared next.

» Zero or more arguments supplied by a ParameterResolver must be declared last.

In this context, an indexed parameter is an argument for a given index in the Arguments provided by
an ArgumentsProvider that is passed as an argument to the parameterized method at the same index
in the method’s formal parameter list. An aggregator is any parameter of type ArgumentsAccessor or
any parameter annotated with @Aggregatellith.

Parameterized Classes

Parameterized classes consume arguments directly from the configured source (see Sources of
Arguments); either via their unique constructor or via field injection. If a @Parameter-annotated field
is declared in the parameterized class or one of its superclasses, field injection will be used.
Otherwise, constructor injection will be used.

Constructor Injection

Q Constructor injection can only be used with the (default) PER_METHOD test instance
lifecycle mode. Please use field injection with the PER_CLASS mode instead.

For constructor injection, the same rules apply as defined for parameterized tests above. In the
following example, two arguments are injected into the constructor of the test class.

@ParameterizedClass
@CsvSource({ "apple, 23", "banana, 42" })
class FruitTests {

final String fruit;
final int quantity;

FruitTests(String fruit, int quantity) {
this.fruit = fruit;
this.quantity = quantity;

@Test
void test() {
assertFruit(fruit);

36


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/Arguments.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/ArgumentsProvider.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/aggregator/ArgumentsAccessor.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/aggregator/AggregateWith.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/Parameter.html

assertQuantity(quantity);

@Test
void anotherTest() {
/] ...

If your programming language level you are using supports records —for example, Java 16 or
higher — you may use them to implement parameterized classes that avoid the boilerplate code of
declaring a test class constructor.

@ParameterizedClass
@CsvSource({ "apple, 23", "banana, 42" })
record FruitTests(String fruit, int quantity) {

@Test

void test() {
assertFruit(fruit);
assertQuantity(quantity);

@Test
void anotherTest() {
/] ...

Field Injection

For field injection, the following rules apply for fields annotated with @Parameter.

» Zero or more indexed parameters may be declared; each must have a unique index specified in
its @Parameter(index) annotation. The index may be omitted if there is only one indexed
parameter. If there are at least two indexed parameter declarations, there must be declarations
for all indexes from 0 to the largest declared index.

» Zero or more aggregators may be declared; each without specifying an index in its @Parameter
annotation.

» Zero or more other fields may be declared as usual as long as they’re not annotated with

@Parameter.

In this context, an indexed parameter is an argument for a given index in the Arguments provided by
an ArgumentsProvider that is injected into a field annotated with @Parameter(index). An aggregator is
any @Parameter-annotated field of type ArgumentsAccessor or any field annotated with
@AggregateWith.

The following example demonstrates how to use field injection to consume multiple arguments in a

57


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/Arguments.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/ArgumentsProvider.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/aggregator/ArgumentsAccessor.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/aggregator/AggregateWith.html

parameterized class.

If field injection is used, no constructor parameters will be resolved with arguments from the

@ParameterizedClass
@CsvSource({ "apple, 23", "banana, 42" })
class FruitTests {

©Parameter(0)
String fruit;

@Parameter(1)
int quantity;

@Test
void test() {
assertFruit(fruit);
assertQuantity(quantity);

@Test
void anotherTest() {
/] ...

source. Other ParameterResolver extensions may resolve constructor parameters as usual, though.

Lifecycle Methods

@BeforeParameterizedClassInvocation and @AfterParameterizedClassInvocation can also be used to
consume arguments if their injectArguments attribute is set to true (the default). If so, their method

signatures must follow the same rules apply as defined for parameterized tests and additionally use

the same parameter types as the indexed parameters of the parameterized test class. Please refer to
the Javadoc of @BeforeParameterizedClassInvocation and @AfterParameterizedClassInvocation for

details and to the Lifecycle section for an example.

38

AutoCloseable arguments

Arguments that implement java.lang.AutoCloseable (or java.io.Closeable which
extends java.lang.AutoCloseable) will be automatically closed after the
parameterized class or test invocation.

To prevent this from happening, set the autoCloseArguments attribute in
@ParameterizedTest to false. Specifically, if an argument that implements
AutoCloseable is reused for multiple invocations of the same parameterized class
or test method, you must specify the autoCloseArguments = false on the
@ParameterizedClass or @ParameterizedTest annotation to ensure that the argument
is not closed between invocations.


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/BeforeParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/AfterParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/BeforeParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/AfterParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedClass.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedTest.html

Other Extensions

Other extensions can access the parameters and resolved arguments of a parameterized test or
class by retrieving a ParameterInfo object from the Store. Please refer to the Javadoc of
ParameterInfo for details.

Sources of Arguments

Out of the box, JUnit Jupiter provides quite a few source annotations. Each of the following
subsections provides a brief overview and an example for each of them. Please refer to the Javadoc
inthe org.junit.jupiter.params.provider package for additional information.

All source annotations in this section are applicable to both @Parameterized(lass
@ and @ParameterizedTest. For the sake of brevity, the examples in this section will
et only show how to use them with @ParameterizedTest methods.

@ValueSource

@ValueSource is one of the simplest possible sources. It lets you specify a single array of literal values
and can only be used for providing a single argument per parameterized test invocation.

The following types of literal values are supported by @ValueSource.

* short

* byte

e int

* long

* float

* double

* char

* boolean

* java.lang.String
* java.lang.(Class

For example, the following @ParameterizedTest method will be invoked three times, with the values
1, 2, and 3 respectively.

@ParameterizedTest

@ValueSource(ints = { 1, 2, 3 })

void testWithValueSource(int argument) {
assertTrue(argument > @ && argument < 4);

}

39


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/support/ParameterInfo.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.Store.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/support/ParameterInfo.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/package-summary.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedClass.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedTest.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/ParameterizedTest.html

Null and Empty Sources

In

order to check corner cases and verify proper behavior of our software when it is supplied bad

input, it can be useful to have null and empty values supplied to our parameterized tests. The
following annotations serve as sources of null and empty values for parameterized tests that accept
a single argument.

* @NullSource: provides a single null argument to the annotated @ParameterizedClass or

@ParameterizedTest.

o @NullSource cannot be used for a parameter that has a primitive type.

» @EmptySource: provides a single empty argument to the annotated @Parameterized(Class or

@ParameterizedTest  for parameters of the following types: java.lang.String,
java.util.Collection (and concrete subtypes with a public no-arg constructor), java.util.List,
java.util.Set, java.util.SortedSet, java.util.NavigableSet, java.util.Map (and concrete
subtypes with a public no-arg constructor), java.util.SortedMap, java.util.NavigableMap,
primitive arrays (e.g., int[ ], char[][ ], etc.), object arrays (e.g., String[ ], Integer[ ][], etc.).

* @NulTAndEmptySource: a composed annotation that combines the functionality of @NullSource and

If
ca
Il\

@EmptySource.

you need to supply multiple varying types of blank strings to a parameterized class or test, you

n achieve that using @ValueSource — for example, @ValueSource(strings = {" ", , "\t",

n"}).

You can also combine @NullSource, @EmptySource, and @ValueSource to test a wider range of null,
empty, and blank input. The following example demonstrates how to achieve this for strings.

@ParameterizedTest

@NullSource

@EmptySource

@ValueSource(strings = { " ", " ", "\t", "\n" })

void nullEmptyAndBlankStrings(String text) {
assertTrue(text == null || text.trim().isEmpty());

}

Making use of the composed @Nul1AndEmptySource annotation simplifies the above as follows.

60

@ParameterizedTest

@NulTAndEmptySource

@ValueSource(strings = { " ", " ", "\t", "\n" })

void nullEmptyAndBlankStrings(String text) {
assertTrue(text == null || text.trim().isEmpty());

}

Both variants of the nullEmptyAndBlankStrings(String) parameterized test method
result in six invocations: 1 for null, 1 for the empty string, and 4 for the explicit
blank strings supplied via @ValueSource.


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/NullSource.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/EmptySource.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/NullAndEmptySource.html

@EnumSource

@EnumSource provides a convenient way to use Enum constants.

@ParameterizedTest

@EnumSource(ChronoUnit.class)

void testWithEnumSource(TemporalUnit unit) {
assertNotNull(unit);

}

The annotation’s value attribute is optional. When omitted, the declared type of the first parameter
is used. The test will fail if it does not reference an enum type. Thus, the value attribute is required
in the above example because the method parameter is declared as TemporalUnit, i.e. the interface
implemented by ChronoUnit, which isn’t an enum type. Changing the method parameter type to
ChronoUnit allows you to omit the explicit enum type from the annotation as follows.

@ParameterizedTest

@EnumSource

void testWithEnumSourceWithAutoDetection(ChronoUnit unit) {
assertNotNull(unit);

}

The annotation provides an optional names attribute that lets you specify which constants shall be
used, like in the following example.

@ParameterizedTest
@EnumSource(names = { "DAYS", "HOURS" })
void testWithEnumSourceInclude(ChronoUnit unit) {
assertTrue(EnumSet.of (ChronoUnit.DAYS, ChronoUnit.HOURS).contains(unit));
}

In addition to names, you can use the from and to attributes to specify a range of constants. The range
starts from the constant specified in the from attribute and includes all subsequent constants up to
and including the one specified in the to attribute, based on the natural order of the enum
constants.

If from and to attributes are omitted, they default to the first and last constants in the enum type,
respectively. If all names, from, and to attributes are omitted, all constants will be used. The following
example demonstrates how to specify a range of constants.

@ParameterizedTest
@EnumSource(from = "HOURS", to = "DAYS")
void testWithEnumSourceRange(ChronoUnit unit) {
assertTrue(EnumSet.of (ChronoUnit.HOURS, ChronoUnit.HALF DAYS, ChronoUnit.DAYS
).contains(unit));

}

61



The @EnumSource annotation also provides an optional mode attribute that enables fine-grained
control over which constants are passed to the test method. For example, you can exclude names
from the enum constant pool or specify regular expressions as in the following examples.

@ParameterizedTest

©@EnumSource(mode = EXCLUDE, names = { "ERAS", "FOREVER" })

void testWithEnumSourceExclude(ChronoUnit unit) {
assertFalse(EnumSet.of(ChronoUnit.ERAS, ChronoUnit.FOREVER).contains(unit));

+

@ParameterizedTest

@EnumSource(mode = MATCH_ALL, names = "A,*DAYS$")

void testWithEnumSourceRegex(ChronoUnit unit) {
assertTrue(unit.name().endsWith("DAYS"));

}

You can also combine mode with the from, to and names attributes to define a range of constants while
excluding specific values from that range as shown below.

@ParameterizedTest
@EnumSource(from = "HOURS", to = "DAYS", mode = EXCLUDE, names = { "HALF_DAYS" })
void testWithEnumSourceRangeExclude(ChronoUnit unit) {
assertTrue(EnumSet.of (ChronoUnit.HOURS, ChronoUnit.DAYS).contains(unit));
assertFalse(EnumSet.of (ChronoUnit.HALF_DAYS).contains(unit));

@MethodSource

@MethodSource allows you to refer to one or more factory methods of the test class or external
classes.

Factory methods within the test class must be static unless the test class is annotated with
@TestInstance(Lifecycle.PER_CLASS); whereas, factory methods in external classes must always be
static.

Each factory method must generate a stream of arguments, and each set of arguments within the
stream will be provided as the physical arguments for individual invocations of the annotated
@ParameterizedClass or @ParameterizedTest. Generally speaking this translates to a Stream of
Arguments (i.e., Stream<Arguments>); however, the actual concrete return type can take on many
forms. In this context, a "stream" is anything that JUnit can reliably convert into a Stream, such as
Stream, DoubleStream, LongStream, IntStream, Collection, Iterator, Iterable, an array of objects or
primitives, or any type that provides an iterator(): Iterator method (such as, for example, a
kotlin.sequences.Sequence). The "arguments" within the stream can be supplied as an instance of
Arguments, an array of objects (e.g., Object[]), or a single value if the parameterized class or test
method accepts a single argument.

62


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/MethodSource.html

If the return type is Stream or one of the primitive streams, JUnit will properly close it by calling
BaseStream.close(), making it safe to use a resource such as Files.lines().

If you only need a single parameter, you can return a Stream of instances of the parameter type as
demonstrated in the following example.

@ParameterizedTest

@MethodSource("stringProvider")

void testWithExplicitLocalMethodSource(String argument) {
assertNotNull(arqument);

}

static Stream<String> stringProvider() {
return Stream.of("apple", "banana");

}

For a @Parameterized(lass, providing a factory method name via @MethodSource is mandatory. For a
@ParameterizedTest, if you do not explicitly provide a factory method name, JUnit Jupiter will search
for a factory method with the same name as the current @ParameterizedTest method by convention.
This is demonstrated in the following example.

@ParameterizedTest

@MethodSource

void testWithDefaultLocalMethodSource(String argument) {
assertNotNull(arqument);

}

static Stream<String> testWithDefaultLocalMethodSource() {
return Stream.of("apple", "banana");

}

Streams for primitive types (DoubleStream, IntStream, and LongStream) are also supported as
demonstrated by the following example.

@ParameterizedTest

@MethodSource("range")

void testWithRangeMethodSource(int arqgument) {
assertNotEquals(9, argument);

}

static IntStream range() {
return IntStream.range(@, 20).skip(10);
}

If a parameterized class or test method declares multiple parameters, you need to return a
collection, stream, or array of Arguments instances or object arrays as shown below (see the Javadoc
for @MethodSource for further details on supported return types). Note that arguments(Object:-+) is a

63


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/MethodSource.html

static factory method defined in the Arguments interface. In addition, Arguments.of(Object::-) may be
used as an alternative to arguments(Object::-).

@ParameterizedTest

@MethodSource("stringIntAndListProvider")

void testWithMultiArgMethodSource(String str, int num, List<String> list) {
assertEquals(5, str.length());
assertTrue(num >=1 && num <=2);
assertEquals(2, list.size());

}

static Stream<Arguments> stringIntAndListProvider() {
return Stream.of(
arguments("apple", 1, Arrays.asList("a", "b")),
arguments("lemon", 2, Arrays.asList("x", "y"))

)i

An external, static factory method can be referenced by providing its fully qualified method name
as demonstrated in the following example.

package example;
import java.util.stream.Stream;

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.MethodSource;

class ExternalMethodSourceDemo {

@ParameterizedTest
@MethodSource("example.StringsProviders#tinyStrings")
void testWithExternalMethodSource(String tinyString) {
// test with tiny string
}
}

class StringsProviders {

static Stream<String> tinyStrings() {
return Stream.of(".", "oo", "000");

}

Factory methods can declare parameters, which will be provided by registered implementations of
the ParameterResolver extension APL In the following example, the factory method is referenced by
its name since there is only one such method in the test class. If there are several local methods
with the same name, parameters can also be provided to differentiate them - for example,

64



@MethodSource("factoryMethod()") or @MethodSource("factoryMethod(java.lang.String)").
Alternatively, the factory method can be referenced by its fully qualified method name, e.g.
@MethodSource("example.MyTests#factoryMethod(java.lang.String)").

@RegisterExtension
static final IntegerResolver integerResolver = new IntegerResolver();

@ParameterizedTest

@MethodSource("factoryMethodWithArguments")

void testWithFactoryMethodWithArguments(String argument) {
assertTrue(argument.startsWith("2"));

}

static Stream<Arguments> factoryMethodWithArguments(int quantity) {
return Stream.of(

arguments(quantity +

arguments(quantity +

apples"),
lemons")

)
}

static class IntegerResolver implements ParameterResolver {

@verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {

return parameterContext.getParameter().getType() == int.class;

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {

return 2;

@FieldSource

@FieldSource allows you to refer to one or more fields of the test class or external classes.

Fields within the test class must be static wunless the test class is annotated with
@TestInstance(Lifecycle.PER_CLASS); whereas, fields in external classes must always be static.

Each field must be able to supply a stream of arguments, and each set of "arguments" within the
"stream" will be provided as the physical arguments for individual invocations of the annotated
@ParameterizedClass or @ParameterizedTest.

In this context, a "stream" is anything that JUnit can reliably convert to a Stream; however, the

65


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/FieldSource.html

actual concrete field type can take on many forms. Generally speaking this translates to a
Collection, an Iterable, a Supplier of a stream (Stream, DoubleStream, LongStream, or IntStream), a
Supplier of an Iterator, an array of objects or primitives, or any type that provides an iterator():
Iterator method (such as, for example, a kotlin.sequences.Sequence). Each set of "arguments"”
within the "stream" can be supplied as an instance of Arguments, an array of objects (for example,
Object[], String[], etc.), or a single value if the parameterized class or test method accepts a single
argument.

In contrast to the supported return types for @MethodSource factory methods, the
value of a @FieldSource field cannot be an instance of Stream, DoubleStream,

A LongStream, IntStream, or Iterator, since the values of such types are consumed the
first time they are processed. However, if you wish to use one of these types, you
can wrap it in a Supplier — for example, Supplier<IntStream>.

If the Supplier return type is Stream or one of the primitive streams, JUnit will properly close it by
calling BaseStream.close(), making it safe to use a resource such as Files.lines().

Please note that a one-dimensional array of objects supplied as a set of "arguments" will be handled
differently than other types of arguments. Specifically, all the elements of a one-dimensional array
of objects will be passed as individual physical arguments to the @Parameterized(lass or
@ParameterizedTest. See the Javadoc for @FieldSource for further details.

For a @ParameterizedClass, providing a field name via @FieldSource is mandatory. For a
@ParameterizedTest, if you do not explicitly provide a field name, JUnit Jupiter will search in the test
class for a field that has the same name as the current @ParameterizedTest method by convention.
This is demonstrated in the following example. This parameterized test method will be invoked
twice: with the values "apple" and "banana".

@ParameterizedTest

@FieldSource

void arrayOfFruits(String fruit) {
assertFruit(fruit);

}

static final String[] arrayOfFruits = { "apple", "banana" };

The following example demonstrates how to provide a single explicit field name via @FieldSource.
This parameterized test method will be invoked twice: with the values "apple” and "banana".

@ParameterizedTest

@FieldSource("1istOfFruits")

void singleFieldSource(String fruit) {
assertFruit(fruit);

}

static final List<String> listOfFruits = Arrays.asList("apple", "banana");

66


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/FieldSource.html

The following example demonstrates how to provide multiple explicit field names via @FieldSource.
This example uses the 1istOfFruits field from the previous example as well as the additionalFruits
field. Consequently, this parameterized test method will be invoked four times: with the values

Ilapp'l-e"’ llbanana , Cherry"’ and "deWberry".

@ParameterizedTest

@FieldSource({ "listOfFruits", "additionalFruits" })

void multipleFieldSources(String fruit) {
assertFruit(fruit);

}

static final Collection<String> additionalFruits = Arrays.asList("cherry",
"dewberry");

It is also possible to provide a Stream, DoubleStream, IntStream, LongStream, or Iterator as the source
of arguments via a @FieldSource field as long as the stream or iterator is wrapped in a
java.util.function.Supplier. The following example demonstrates how to provide a Supplier of a
Stream of named arguments. This parameterized test method will be invoked twice: with the values
"apple” and "banana" and with display names Apple and Banana, respectively.

@ParameterizedTest

@FieldSource

void namedArgumentsSupplier(String fruit) {
assertFruit(fruit);

}

static final Supplier<Stream<Arguments>> namedArgumentsSupplier = () -> Stream.of(
arguments(named("Apple", "apple")),
arguments(named("Banana", "banana"))

)

Note that arguments(Object:--) is a static factory method defined in the
o org.junit.jupiter.params.provider.Arguments interface.

Similarly, named(String, Object) is a static factory method defined in the
org.junit.jupiter.api.Named interface.

If a parameterized class or test method declares multiple parameters, the corresponding
@FieldSource field must be able to provide a collection, stream supplier, or array of Arguments
instances or object arrays as shown below (see the Javadoc for @FieldSource for further details on
supported types).

@ParameterizedTest

@FieldSource("stringIntAndListArguments")

void testWithMultiArgFieldSource(String str, int num, List<String> list) {
assertEquals(5, str.length());
assertTrue(num >=1 && num <=2);

67


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/FieldSource.html

assertEquals(2, list.size());
}

static List<Arguments> stringIntAndListArguments = Arrays.aslList(
arguments("apple”, 1, Arrays.asList("a", "b")),
arguments("lemon", 2, Arrays.asList("x", "y"))

)

o Note that arguments(Object::+) is a static factory method defined in the
org.junit.jupiter.params.provider.Arguments interface.

An external, static @FieldSource field can be referenced by providing its fully qualified field name as
demonstrated in the following example.

@ParameterizedTest

@FieldSource("example.FruitUtils#tropicalFruits")

void testWithExternalFieldSource(String tropicalFruit) {
// test with tropicalFruit

+

@CsvSource

@CsvSource allows you to express argument lists as comma-separated values (i.e., CSV String
literals). Each string provided via the value attribute in @CsvSource represents a CSV record and
results in one invocation of the parameterized class or test. The first record may optionally be used
to supply CSV headers (see the Javadoc for the useHeadersInDisplayName attribute for details and an
example).

@ParameterizedTest
@CsvSource({
"apple, 1",
"banana, 2",

"'lemon, lime', OxF1",
"strawberry, 700 000"

3]

void testWithCsvSource(String fruit, int rank) {
assertNotNull(fruit);
assertNotEquals(@, rank);

The default delimiter is a comma (,), but you can use another character by setting the delimiter
attribute. Alternatively, the delimiterString attribute allows you to use a String delimiter instead of
a single character. However, both delimiter attributes cannot be set simultaneously.

By default, @CsvSource uses a single quote (') as its quote character, but this can be changed via the
quoteCharacter attribute. See the 'lemon, lime' value in the example above and in the table below.
An empty, quoted value ('') results in an empty String unless the emptyValue attribute is set;

68



whereas, an entirely empty value is interpreted as a null reference. By specifying one or more
nullValues, a custom value can be interpreted as a null reference (see the NIL example in the table
below). An ArgumentConversionException is thrown if the target type of a null reference is a primitive

type.

o An unquoted empty value will always be converted to a null reference regardless
of any custom values configured via the nullValues attribute.

Except within a quoted string, leading and trailing whitespace in a CSV column is trimmed by
default. This behavior can be changed by setting the ignoreLeadingAndTrailingWhitespace attribute
to true.

Example Input Resulting Argument List
@CsvSource({ "apple, banana" }) "apple", "banana"
@CsvSource({ "apple, 'lemon, lime'" }) "apple", "lemon, lime"
@CsvSource({ "apple, ''" }) "apple", ""

@CsvSource({ "apple, " }) "apple", null

@CsvSource(value = { "apple, banana, NIL" }, "apple", "banana", null
nullValues = "NIL")

@CsvSource(value = { " apple , banana" }, " apple "," banana"
ignoreLeadingAndTrailingWhitespace = false)

If the programming language you are using supports text blocks —for example, Java SE 15 or
higher —you can alternatively use the textBlock attribute of @CsvSource. Each record within a text
block represents a CSV record and results in one invocation of the parameterized class or test. The
first record may optionally be used to supply CSV headers by setting the useHeadersInDisplayName
attribute to true as in the example below.

Using a text block, the previous example can be implemented as follows.

@ParameterizedTest(name = "[{index}] {arguments}")
@CsvSource(useHeadersInDisplayName = true, textBlock = """

FRUIT, RANK
apple, 1
banana, 2

"lemon, lime', OxF1
strawberry, 700 _000

nn ll)
void testWithCsvSource(String fruit, int rank) {

/] ...
}

The generated display names for the previous example include the CSV header names.

[1] FRUIT
[2] FRUIT

apple, RANK =1
banana, RANK = 2

69



[3] FRUIT
[4] FRUIT

lemon, lime, RANK = OxF1
strawberry, RANK = 700_000

In contrast to CSV records supplied via the value attribute, a text block can contain comments. Any
line beginning with a # symbol will be treated as a comment and ignored. Note, however, that the #
symbol must be the first character on the line without any leading whitespace. It is therefore
recommended that the closing text block delimiter (""") be placed either at the end of the last line
of input or on the following line, left aligned with the rest of the input (as can be seen in the
example below which demonstrates formatting similar to a table).

@ParameterizedTest
@CsvSource(delimiter = '|', quoteCharacter = '"', textBlock = """
B oo oo
# FRUIT | RANK
B o oo
apple | 1
B oo oo __
banana | 2
B oo oo
"lemon lime" | OxF1
B oo oo
strawberry | 700_000
B o oo
)
void testWithCsvSource(String fruit, int rank) {
/] ...
+

Java’s text block feature automatically removes incidental whitespace when the
code is compiled. However other JVM languages such as Groovy and Kotlin do not.

o Thus, if you are using a programming language other than Java and your text
block contains comments or new lines within quoted strings, you will need to
ensure that there is no leading whitespace within your text block.

@CsvFileSource

@CsvFileSource lets you use comma-separated value (CSV) files from the classpath or the local file
system. Each record from a CSV file results in one invocation of the parameterized class or test. The
first record may optionally be used to supply CSV headers. You can instruct JUnit to ignore the
headers via the numLinesToSkip attribute. If you would like for the headers to be used in the display
names, you can set the useHeadersInDisplayName attribute to true. The examples below demonstrate
the use of numLinesToSkip and useHeadersInDisplayName.

The default delimiter is a comma (,), but you can use another character by setting the delimiter
attribute. Alternatively, the delimiterString attribute allows you to use a String delimiter instead of
a single character. However, both delimiter attributes cannot be set simultaneously.

0 Comments in CSV files

70


https://docs.oracle.com/en/java/javase/15/text-blocks/index.html

Any line beginning with a # symbol will be interpreted as a comment and will be
ignored.

@ParameterizedTest

@CsvFileSource(resources = "/two-column.csv", numLinesToSkip = 1)

void testWithCsvFileSourceFromClasspath(String country, int reference) {
assertNotNull(country);
assertNotEquals(@, reference);

}

@ParameterizedTest
@CsvFileSource(files = "src/test/resources/two-column.csv", numLinesToSkip = 1)
void testWithCsvFileSourceFromFile(String country, int reference) {
assertNotNull(country);
assertNotEquals(@, reference);

}

@ParameterizedTest(name = "[{index}] {arguments}")
@CsvFileSource(resources = "/two-column.csv", useHeadersInDisplayName = true)
void testWithCsvFileSourceAndHeaders(String country, int reference) {
assertNotNull(country);
assertNotEquals(@, reference);

two-column.csv

COUNTRY, REFERENCE

Sweden, 1

Poland, 2

"United States of America", 3
France, 700_000

The following listing shows the generated display names for the first two parameterized test
methods above.

[1] country=Sweden, reference=1

[2] country=Poland, reference=2

[3] country=United States of America, reference=3
[4] country=France, reference=700_000

The following listing shows the generated display names for the last parameterized test method
above that uses CSV header names.

[1] COUNTRY
[2] COUNTRY
[3] COUNTRY

Sweden, REFERENCE = 1
Poland, REFERENCE = 2
United States of America, REFERENCE = 3

71



[4] COUNTRY = France, REFERENCE = 700_000

In contrast to the default syntax used in @CsvSource, @CsvFileSource uses a double quote (") as the
quote character by default, but this can be changed via the quoteCharacter attribute. See the "United
States of America" value in the example above. An empty, quoted value ("") results in an empty
String unless the emptyValue attribute is set; whereas, an entirely empty value is interpreted as a
null reference. By specifying one or more nullValues, a custom value can be interpreted as a null
reference. An ArgumentConversionException is thrown if the target type of a null reference is a
primitive type.

e An unquoted empty value will always be converted to a null reference regardless
of any custom values configured via the nullValues attribute.

Except within a quoted string, leading and trailing whitespace in a CSV column is trimmed by
default. This behavior can be changed by setting the ignoreLeadingAndTrailingWhitespace attribute
to true.

@ArgumentsSource

@ArgumentsSource can be used to specify a custom, reusable ArgumentsProvider. Note that an
implementation of ArgumentsProvider must be declared as either a top-level class or as a static
nested class.

@ParameterizedTest

@ArqumentsSource(MyArgumentsProvider.class)

void testWithArgumentsSource(String arqument) {
assertNotNull(arqument);

}

public class MyArgumentsProvider implements ArgumentsProvider {

@0verride
public Stream<? extends Arguments> provideArguments(ParameterDeclarations
parameters,
ExtensionContext context) {
return Stream.of("apple", "banana").map(Arguments::of);

If you wish to implement a custom ArgumentsProvider that also consumes an annotation (like built-
in providers such as ValueArgumentsProvider or CsvArgumentsProvider), you have the possibility to
extend the AnnotationBasedArgumentsProvider class.

Moreover, ArgumentsProvider implementations may declare constructor parameters in case they
need to be resolved by a registered ParameterResolver as demonstrated in the following example.

72


https://github.com/junit-team/junit-framework/blob/main/junit-jupiter-params/src/main/java/org/junit/jupiter/params/provider/ValueArgumentsProvider.java
https://github.com/junit-team/junit-framework/blob/main/junit-jupiter-params/src/main/java/org/junit/jupiter/params/provider/CsvArgumentsProvider.java
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/provider/AnnotationBasedArgumentsProvider.html

public class MyArgumentsProviderWithConstructorInjection implements ArgumentsProvider

{

private final TestInfo testInfo;

public MyArgumentsProviderWithConstructorInjection(TestInfo testInfo) {
this.testInfo = testInfo;

}

@0verride
public Stream<? extends Arguments> provideArguments(ParameterDeclarations
parameters,
ExtensionContext context) {
return Stream.of(Arguments.of(testInfo.getDisplayName()));

Multiple sources using repeatable annotations

Repeatable annotations provide a convenient way to specify multiple sources from different
providers.

@DisplayName("A parameterized test that makes use of repeatable annotations")
@ParameterizedTest
@MethodSource("someProvider")
@MethodSource("otherProvider")
void testWithRepeatedAnnotation(String argument) {
assertNotNull(argument);

}

static Stream<String> someProvider() {
return Stream.of("foo");

}

static Stream<String> otherProvider() {
return Stream.of("bar");

}

Following the above parameterized test, a test case will run for each argument:

[1] foo
[2] bar

The following annotations are repeatable:

e @ValueSource

¢ @EnumSource

73



@MethodSource

@FieldSource

e @CsvSource

@CsvFileSource

* @ArgumentsSource

Argument Count Validation

Argument count validation is currently an experimental feature. You’re invited to
A give it a try and provide feedback to the JUnit team so they can improve and
eventually promote this feature.

By default, when an arguments source provides more arguments than the test method needs, those
additional arguments are ignored and the test executes as usual. This can lead to bugs where
arguments are never passed to the parameterized class or method.

To prevent this, you can set argument count validation to 'strict'. Then, any additional arguments
will cause an error instead.

To change this behavior for all tests, set the junit.jupiter.params.argumentCountValidation
configuration parameter to strict. To change this behavior for a single parameterized class or test
method, use the argumentCountValidation attribute of the @ParameterizedClass or @ParameterizedTest
annotation:

@ParameterizedTest(argumentCountValidation = ArgumentCountValidationMode.STRICT)
@CsvSource({ "42, -666" })
void testWithArgumentCountValidation(int number) {

assertTrue(number > 0);

}

Argument Conversion

Widening Conversion

JUnit Jupiter supports Widening Primitive Conversion for arguments supplied to a
@ParameterizedClass or @ParameterizedTest. For example, a parameterized class or test method
annotated with @ValueSource(ints = { 1, 2, 3 }) can be declared to accept not only an argument
of type int but also an argument of type long, float, or double.

Implicit Conversion

To support use cases like @CsvSource, JUnit Jupiter provides a number of built-in implicit type
converters. The conversion process depends on the declared type of each method parameter.

For example, if a @ParameterizedClass or @ParameterizedTest declares a parameter of type TimeUnit
and the actual type supplied by the declared source is a String, the string will be automatically

74


https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2

converted into the corresponding TimeUnit enum constant.

@ParameterizedTest

@ValueSource(strings = "SECONDS")

void testWithImplicitArgumentConversion(ChronoUnit argument) {
assertNotNull(argument.name());

}

String instances are implicitly converted to the following target types.

Target
Type

boolean/
Boolean

byte/Byt
e

char/Cha
racter

short/Sh
ort

int/Inte
ger

long/Lon
9

float/F1
oat

double/D
ouble

Enum
subclass
java.io.
File

java.lan
g.(Class

java.lan
g.Class

java.lan
g.Class

java.mat
h.BigDec
imal

Decimal, hexadecimal, and octal String literals will be converted to their integral
types: byte, short, int, long, and their boxed counterparts.

Example

"true" - true (only accepts values 'true’ or 'false’, case-insensitive)
"15", "@xF", or "017" -~ (byte) 15

"15", "@xF", or "017" - (short) 15

"15", "@xF", or "017" - 15

"15", "@xF", or "017" - 15L

"1.0" - 1.0f

"1.0" - 1.0d

"SECONDS" — TimeUnit.SECONDS

"/path/to/file" — new File("/path/to/file")

"java.lang.Integer" — java.lang.Integer.class (use $ for nested classes, e.g.
"java.lang.Thread$State")

"byte" — byte.class (primitive types are supported)
"char[]" - char[].class (array types are supported)

"123.456e789" — new BigDecimal("123.456e789")

75



Target
Type

java.mat
h.BigInt
eger

java.net
.URI

java.net
.URL

java.nio
.charset
.Charset

java.nio
.file.Pa
th

java.tim
e.Durati
on

java.tim
e.Instan
t

java.tim
e.LocalD
ateTime

java.tim
e.LocalD
ate

java.tim
e.LocalT
ime

java.tim
e.MonthD

ay
java.tim

e.0ffset
DateTime

java.tim
e.0ffset
Time

java.tim
e.Period

java.tim
e.YearMo
nth

java.tim
e.Year

java.tim
e.ZonedD
ateTime

76

Example

"1234567890123456789" — new BigInteger("1234567890123456789")

"https://junit.org/" — URI.create("https://junit.org/")
"https://junit.org/" — URI.create("https://junit.org/").toURL()

"UTF-8" - Charset.forName("UTF-8")

"/path/to/file" — Paths.get("/path/to/file")

"PT3S" — Duration.ofSeconds(3)

"1970-01-01T700:00:007" — Instant.ofEpochMilli(0)

"2017-03-14T712:34:56.789" — LocalDateTime.of (2017, 3, 14, 12, 34, 56, 789 _000_000)

"2017-03-14" — LocalDate.of (2017, 3, 14)

"12:34:56.789" — LocalTime.of(12, 34, 56, 789_000_000)

"--03-14" - MonthDay.of(3, 14)

"2017-03-14T712:34:56.7897" — OffsetDateTime.of(2017, 3, 14, 12, 34, 56, 789_000_000,

ZoneOffset.UTC)

"12:34:56.7897" — OffsetTime.of(12, 34, 56, 789 _000 000, ZoneOffset.UTC)

"P2M6D" - Period.of(0, 2, 6)

"2017-03" - YearMonth.of (2017, 3)

"2017" - Year.of(2017)

"2017-03-14T12:34:56.789Z" — ZonedDateTime.of (2017, 3, 14, 12, 34, 56, 789_000_000,
ZoneOffset.UTC)



Target Example
Type

java.tim "Europe/Berlin" — Zoneld.of("Europe/Berlin")
e.Zoneld

java.tim "402:30" - ZoneOffset.ofHoursMinutes(2, 30)
e.ZoneOf

fset

java.uti "Jpy" - Currency.getInstance("JPY")
1.Curren

cy

java.uti "ep-US" - Locale.forLanguageTag("en-US")
1.Locale

java.uti "4p43e930-7b3b-48e3-bdbe-5a3ccfb833db” ~ UUID. fromString("d43e930-7b3b-48e3-bdbe-
L.UUID  5a3ccfb833db")

To revert to the old java.util.lLocale conversion behavior of version 5.12 and
earlier (which called the deprecated Locale(String) constructor), you can set the

A junit.jupiter.params.arguments.conversion.locale.format configuration
parameter to iso_639. However, please note that this parameter is deprecated and
will be removed in a future release.

Fallback String-to-Object Conversion

In addition to implicit conversion from strings to the target types listed in the above table, JUnit
Jupiter also provides a fallback mechanism for automatic conversion from a String to a given target
type if the target type declares exactly one suitable factory method or a factory constructor as
defined below.

* factory method: a non-private, static method declared in the target type that accepts a single
String argument and returns an instance of the target type. The name of the method can be
arbitrary and need not follow any particular convention.

* factory constructor: a non-private constructor in the target type that accepts a single String
argument. Note that the target type must be declared as either a top-level class or as a static
nested class.

If multiple factory methods are discovered, they will be ignored. If a factory
o method and a factory constructor are discovered, the factory method will be used
instead of the constructor.

For example, in the following @ParameterizedTest method, the Book argument will be created by
invoking the Book.fromTitle(String) factory method and passing "42 Cats" as the title of the book.

@ParameterizedTest

@ValueSource(strings = "42 Cats")

void testWithImplicitFallbackArgumentConversion(Book book) {
assertEquals("42 Cats", book.getTitle());

}

77



public class Book {
private final String title;

private Book(String title) {
this.title = title;
}

public static Book fromTitle(String title) {
return new Book(title);

}

public String getTitle() {
return this.title;

}

Explicit Conversion

Instead of relying on implicit argument conversion, you may explicitly specify an ArgumentConverter
to use for a certain parameter using the @ConvertWith annotation like in the following example. Note
that an implementation of ArgumentConverter must be declared as either a top-level class or as a
static nested class.

@ParameterizedTest

@EnumSource(ChronoUnit.class)

void testWithExplicitArgumentConversion(
@ConvertWith(ToStringArgumentConverter.class) String argument) {

assertNotNull(ChronoUnit.valueOf(argument));

public class ToStringArgumentConverter extends SimpleArgumentConverter {

@0verride
protected Object convert(Object source, Class<?> targetType) {
assertEquals(String.class, targetType, "Can only convert to String");
if (source instanceof Enum<?>) {
return ((Enum<?>) source).name();

}

return String.valueOf(source);

If the converter is only meant to convert one type to another, you can extend
TypedArgumentConverter to avoid boilerplate type checks.

78



public class TolLengthArgumentConverter extends TypedArgumentConverter<String, Integer>

{

protected TolLengthArgumentConverter() {
super(String.class, Integer.class);

}

@0verride
protected Integer convert(String source) {
return (source != null ? source.length() : 0);

}

Explicit argument converters are meant to be implemented by test and extension authors. Thus,
junit-jupiter-params only provides a single explicit argument converter that may also serve as a
reference implementation: JavaTimeArgumentConverter. It is used via the composed annotation
JavaTimeConversionPattern

@ParameterizedTest

@ValueSource(strings = { "01.01.2017", "31.12.2017" })

void testWithExplicitJavaTimeConverter (
@JavaTimeConversionPattern("dd.MM.yyyy") LocalDate argument) {

assertEquals(2017, argument.getYear());

If you wish to implement a custom ArgumentConverter that also consumes an annotation (like
JavaTimeArgumentConverter), you have the possibility to extend the AnnotationBasedArgumentConverter
class.

Argument Aggregation

By default, each argument provided to a @Parameterized(Class or @ParameterizedTest corresponds to a
single method parameter. Consequently, argument sources which are expected to supply a large
number of arguments can lead to large constructor or method signatures, respectively.

In such cases, an ArgumentsAccessor can be used instead of multiple parameters. Using this API, you
can access the provided arguments through a single argument passed to your test method. In
addition, type conversion is supported as discussed in Implicit Conversion.

Besides, you can retrieve the current test invocation index with

ArgumentsAccessor.getInvocationIndex().

@ParameterizedTest
@CsvSource({
"Jane, Doe, F, 1990-05-20",

79


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/converter/AnnotationBasedArgumentConverter.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/aggregator/ArgumentsAccessor.html

"John, Doe, M, 1990-10-22"
b
void testWithArgumentsAccessor (ArgumentsAccessor arguments) {
Person person = new Person(
arguments.getString(0),
arguments.getString(1),
arguments.get(2, Gender.class),
arguments.get(3, LocalDate.class));

if (person.getFirstName().equals("Jane")) {
assertEquals(Gender.F, person.getGender());

}
else {

assertEquals(Gender.M, person.getGender());
}

assertEquals("Doe", person.getlLastName());
assertEquals(1990, person.getDateOfBirth().getYear());

An instance of ArgumentsAccessor is automatically injected into any parameter of type
ArgumentsAccessor.

Custom Aggregators

Apart from direct access to the arguments of a @ParameterizedClass or @ParameterizedTest using an
ArgumentsAccessor, JUnit Jupiter also supports the usage of custom, reusable aggregators.

To use a custom aggregator, implement the ArgumentsAggregator interface and register it via the
@AggregateWith annotation on a compatible parameter of the @ParameterizedClass or
@ParameterizedTest. The result of the aggregation will then be provided as an argument for the
corresponding parameter when the parameterized test is invoked. Note that an implementation of
ArgumentsAggregator must be declared as either a top-level class or as a static nested class.

@ParameterizedTest
@CsvSource({
"Jane, Doe, F, 1990-05-20",
"John, Doe, M, 1990-10-22"
b
void testWithArgumentsAggregator(@AggregateWith(PersonAggregator.class) Person person)
{
// perform assertions against person

}

public class PersonAggregator extends SimpleArgumentsAggregator {
@0verride
protected Person aggregateArguments(ArgumentsAccessor arguments, Class<?>
targetType,
AnnotatedElementContext context, int parameterIndex) {

80


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/aggregator/ArgumentsAggregator.html

return new Person(
arguments.getString(0),
arguments.getString(1),
arguments.get(2, Gender.class),
arguments.get(3, LocalDate.class));

If you find yourself repeatedly declaring @AggregateWith(MyTypeAggregator.class) for multiple
parameterized classes or methods across your codebase, you may wish to create a custom
composed annotation such as @CsvToMyType that is meta-annotated with
@AggregateWith(MyTypeAggregator.class). The following example demonstrates this in action with a
custom @CsvToPerson annotation.

@ParameterizedTest
@CsvSource({
"Jane, Doe, F, 1990-05-20",
"John, Doe, M, 1990-10-22"
b

void testWithCustomAggregatorAnnotation(@CsvToPerson Person person) {
// perform assertions against person

}

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.PARAMETER)
©AggregateWith(PersonAggregator.class)
public @interface CsvToPerson {

}

Customizing Display Names

By default, the display name of a parameterized class or test invocation contains the invocation
index and the String representation of all arguments for that specific invocation. Each argument is
preceded by its parameter name (unless the argument is only available via an ArgumentsAccessor or
ArgumentAggregator), if the parameter name is present in the bytecode (for Java, test code must be
compiled with the -parameters compiler flag; for Kotlin, with -java-parameters).

However, you can customize invocation display names via the name attribute of the
@Parameterized(Class or @ParameterizedTest annotation as in the following example.

@DisplayName("Display name of container")

@ParameterizedTest(name = "{index} ==> the rank of ''{0}'' is {1}")
@CsvSource({ "apple, 1", "banana, 2", "'lemon, lime', 3" })

void testWithCustomDisplayNames(String fruit, int rank) {

+

81



When executing the above method using the ConsoleLauncher you will see output similar to the
following.

Display name of container v

— 1 ==> the rank of 'apple' is 1 v

— 2 ==> the rank of 'banana' is 2 v

L— 3 ==> the rank of 'lemon, lime' is 3 v

o Please note that name is a MessageFormat pattern. Thus, a single quote (') needs to be
represented as a doubled single quote (' ') in order to be displayed.

The following placeholders are supported within custom display names.

Placeholder Description

{displayName} the display name of the method

{index} the current invocation index (1-based)
{arguments} the complete, comma-separated arguments list

{argumentsWithName the complete, comma-separated arguments list with parameter names

S}
{argumentSetName} the name of the argument set

{argumentSetNameOr {argumentSetName} or {argumentsiithNames}, depending on how the arguments
ArgumentsWithNames ... supplied

}

{0}, {1}, ... an individual argument

When including arguments in display names, their string representations are

o truncated if they exceed the configured maximum length. The limit is configurable
via the junit.jupiter.params.displayname.argument.maxlength  configuration
parameter and defaults to 512 characters.

When using @MethodSource, @FieldSource, or @ArgumentsSource, you can provide custom names for
individual arguments or custom names for entire sets of arguments.

Use the Named API to provide a custom name for an individual argument, and the custom name will
be used if the argument is included in the invocation display name, like in the example below.

@DisplayName("A parameterized test with named arguments")
@ParameterizedTest(name = "{index}: {0}")
@MethodSource("namedArguments")

void testWithNamedArguments(File file) {

}

static Stream<Arguments> namedArguments() {
return Stream.of(

82


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Named.html

arguments(named("An important file", new File("path1"))),
arguments(named("Another file", new File("path2")))
)

When executing the above method using the ConsoleLauncher you will see output similar to the
following.

A parameterized test with named arguments v
— 1: An important file v
L— 2: Another file v

Note that arguments(Object::+) is a static factory method defined in the
o org.junit.jupiter.params.provider.Arguments interface.

Similarly, named(String, Object) is a static factory method defined in the
org.junit.jupiter.api.Named interface.

Use the ArgumentSet API to provide a custom name for the entire set of arguments, and the custom
name will be used as the display name, like in the example below.

@DisplayName("A parameterized test with named argument sets")
@ParameterizedTest

@FieldSource("argumentSets")
void testWithArgumentSets(File filel, File file2) {
+

static List<Arguments> argumentSets = Arrays.aslList(
argumentSet("Important files", new File("path1"), new File("path2")),

argumentSet("Other files", new File("path3"), new File("path4"))
)i

When executing the above method using the ConsoleLauncher you will see output similar to the
following.

A parameterized test with named argument sets v
— [1] Important files v
L— [2] Other files v

o Note that argumentSet(String, Object::+) is a static factory method defined in the
org.junit.jupiter.params.provider.Arguments interface.

If you’d like to set a default name pattern for all parameterized classes and tests in your project,

83



you can declare the junit.jupiter.params.displayname.default configuration parameter in the
junit-platform.properties file as demonstrated in the following example (see Configuration
Parameters for other options).

junit.jupiter.params.displayname.default = {index}

The display name for a parameterized class or test is determined according to the following
precedence rules:

1. name attribute in @ParameterizedClass or @ParameterizedTest, if present
2. value of the junit.jupiter.params.displayname.default configuration parameter, if present

3. DEFAULT_DISPLAY_NAME constant defined in
org.junit.jupiter.params.ParameterizedInvocationConstants

Lifecycle and Interoperability

Parameterized Tests

Each invocation of a parameterized test has the same lifecycle as a regular @Test method. For
example, eBeforeEach methods will be executed before each invocation. Similar to Dynamic Tests,
invocations will appear one by one in the test tree of an IDE. You may at will mix regular @Test
methods and @ParameterizedTest methods within the same test class.

You may use ParameterResolver extensions with @ParameterizedTest methods. However, method
parameters that are resolved by argument sources need to come first in the parameter list. Since a
test class may contain regular tests as well as parameterized tests with different parameter lists,
values from argument sources are not resolved for lifecycle methods (e.g. @BeforeEach) and test
class constructors.

@BeforeEach
void beforeEach(TestInfo testInfo) {
/] ...

@ParameterizedTest

@ValueSource(strings = "apple")

void testWithRegularParameterResolver(String argument, TestReporter testReporter) {
testReporter.publishEntry("argument”, argument);

}

@AfterEach
void afterEach(TestInfo testInfo) {
/] ...

84



Parameterized Classes

Each invocation of a parameterized class has the same lifecycle as a regular test class. For example,
@BeforeAll methods will be executed once before all invocations and @BeforeEach methods will be
executed before each test method invocation. Similar to Dynamic Tests, invocations will appear one
by one in the test tree of an IDE.

You may use ParameterResolver extensions with @Parameterized(Class constructors. However, if
constructor injection is used, constructor parameters that are resolved by argument sources need
to come first in the parameter list. Values from argument sources are not resolved for regular
lifecycle methods (e.g. @BeforeEach).

In addition to regular lifecycle methods, parameterized classes may declare
@BeforeParameterizedClassInvocation and @AfterParameterizedClassInvocation lifecycle methods
that are called once before/after each invocation of the parameterized class. These methods must
be static unless the parameterized class is configured to use @TestInstance(Lifecycle.PER_CLASS)
(see Test Instance Lifecycle).

These lifecycle methods may optionally declare parameters that are resolved depending on the
setting of the injectArquments annotation attribute. If it is set to false, the parameters must be
resolved by other registered ParameterResolver extensions. If the attribute is set to true (the
default), the method may declare parameters that match the arguments of the parameterized class
(see the Javadoc of @BeforeParameterizedClassInvocation and @AfterParameterizedClassInvocation
for details). This may, for example, be used to initialize the used arguments as demonstrated by the
following example.

Using parameterized class lifecycle methods

@ParameterizedClass
@MethodSource("textFiles")
class TextFileTests {

static List<TextFile> textFiles() {
return List.of(
new TextFile("filel", "first content"),
new TextFile("file2", "second content")

)i

@Parameter
TextFile textFile;

@BeforeParameterizedClassInvocation
static void beforelnvocation(TextFile textFile, @TempDir Path tempDir) throws
Exception {
var filePath = tempDir.resolve(textFile.fileName); @D
textFile.path = Files.writeString(filePath, textFile.content);

@AfterParameterizedClassInvocation
static void afterInvocation(TextFile textFile) throws Exception {

85


attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/BeforeParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/AfterParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/BeforeParameterizedClassInvocation.html
attachment$api//org.junit.jupiter.params/org/junit/jupiter/params/AfterParameterizedClassInvocation.html

var actualContent = Files.readString(textFile.path); ®

assertEquals(textFile.content, actualContent, "Content must not have
changed");

// Custom cleanup logic, if necessary

// File will be deleted automatically by @TempDir support

@Test
void test() {
assertTrue(Files.exists(textFile.path)); @

}

@Test

void anotherTest() {
/] ...

}

static class TextFile {

final String fileName;
final String content;
Path path;

TextFile(String fileName, String content) {
this.fileName = fileName;
this.content = content;

}

@0verride
public String toString() {
return fileName;

}

@ Initialization of the argument before each invocation of the parameterized class
@ Usage of the previously initialized argument in a test method

® Validation and cleanup of the argument after each invocation of the parameterized class

Class Templates

A @pClassTemplate is not a regular test class but rather a template for the contained test cases. As
such, it is designed to be invoked multiple times depending on invocation contexts returned by the
registered providers. Thus, it must be wused in conjunction with a registered
ClassTemplateInvocationContextProvider extension. Each invocation of a class template behaves like
the execution of a regular test class with full support for the same lifecycle callbacks and
extensions. Please refer to Providing Invocation Contexts for Class Templates for usage examples.

86


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassTemplate.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ClassTemplateInvocationContextProvider.html

o Parameterized Classes are a built-in specialization of class templates.

Test Templates

A @TestTemplate method is not a regular test case but rather a template for a test case. As such, it is
designed to be invoked multiple times depending on the number of invocation contexts returned by
the registered providers. Thus, it must be wused in conjunction with a registered
TestTemplateInvocationContextProvider extension. Each invocation of a test template method
behaves like the execution of a regular @Test method with full support for the same lifecycle
callbacks and extensions. Please refer to Providing Invocation Contexts for Test Templates for usage
examples.

o Repeated Tests and Parameterized Tests are built-in specializations of test
templates.

Dynamic Tests

The standard @Test annotation in JUnit Jupiter described in Annotations is very similar to the @Test
annotation in JUnit 4. Both describe methods that implement test cases. These test cases are static in
the sense that they are fully specified at compile time, and their behavior cannot be changed by
anything happening at runtime. Assumptions provide a basic form of dynamic behavior but are
intentionally rather limited in their expressiveness.

In addition to these standard tests a completely new kind of test programming model has been
introduced in JUnit Jupiter. This new kind of test is a dynamic test which is generated at runtime by
a factory method that is annotated with @TestFactory.

In contrast to @Test methods, a @TestFactory method is not itself a test case but rather a factory for
test cases. Thus, a dynamic test is the product of a factory. Technically speaking, a @TestFactory
method must return a single DynamicNode or a stream of DynamicNode instances or any of its
subclasses. In this context, a "stream" is anything that JUnit can reliably convert into a Stream, such
as Stream, Collection, Iterator, Iterable, an array of objects, or any type that provides an
iterator(): Iterator method (such as, for example, a kotlin.sequences.Sequence).

Instantiable subclasses of DynamicNode are DynamicContainer and DynamicTest. DynamicContainer
instances are composed of a display name and a list of dynamic child nodes, enabling the creation
of arbitrarily nested hierarchies of dynamic nodes. DynamicTest instances will be executed lazily,
enabling dynamic and even non-deterministic generation of test cases.

Any Stream returned by a @TestFactory will be properly closed by calling stream.close(), making it
safe to use a resource such as Files.lines().

As with @Test methods, @TestFactory methods must not be private or static and may optionally
declare parameters to be resolved by ParameterResolvers.

A DynamicTest is a test case generated at runtime. It is composed of a display name and an
Executable. Executable is a @FunctionalInterface which means that the implementations of dynamic
tests can be provided as lambda expressions or method references.

87


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestTemplate.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestTemplateInvocationContextProvider.html

Dynamic Test Lifecycle

The execution lifecycle of a dynamic test is quite different than it is for a standard
@Test case. Specifically, there are no lifecycle callbacks for individual dynamic
tests. This means that @BeforeEach and @AfterEach methods and their

A corresponding extension callbacks are executed for the @TestFactory method but
not for each dynamic test. In other words, if you access fields from the test instance
within a lambda expression for a dynamic test, those fields will not be reset by
callback methods or extensions between the execution of individual dynamic tests
generated by the same @TestFactory method.

Dynamic Test Examples

The following DynamicTestsDemo class demonstrates several examples of test factories and dynamic
tests.

The first method returns an invalid return type and will cause a warning to be reported by JUnit
during test discovery. Such methods are not executed.

The next six methods demonstrate the generation of a Collection, Iterable, Iterator, array, or
Stream of DynamicTest instances. Most of these examples do not really exhibit dynamic behavior but
merely demonstrate the supported return types in principle. However, dynamicTestsFromStream()
and dynamicTestsFromIntStream() demonstrate how to generate dynamic tests for a given set of
strings or a range of input numbers.

The next method is truly dynamic in nature. generateRandomNumberOfTests() implements an Iterator
that generates random numbers, a display name generator, and a test executor and then provides
all three to DynamicTest.stream(). Although the non-deterministic = behavior of
generateRandomNumberOfTests() is of course in conflict with test repeatability and should thus be
used with care, it serves to demonstrate the expressiveness and power of dynamic tests.

The next method is similar to generateRandomNumberOfTests() in terms of flexibility; however,
dynamicTestsFromStreamFactoryMethod() generates a stream of dynamic tests from an existing Stream
via the DynamicTest.stream() factory method.

For demonstration purposes, the dynamicNodeSingleTest() method generates a single DynamicTest
instead of a stream, and the dynamicNodeSingleContainer() method generates a nested hierarchy of
dynamic tests utilizing DynamicContainer.

import static example.util.StringUtils.isPalindrome;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.junit.jupiter.api.Assertions.assertFalse;

import static org.junit.jupiter.api.Assertions.assertNotNull;

import static org.junit.jupiter.api.Assertions.assertTrue;

import static org.junit.jupiter.api.DynamicContainer.dynamicContainer;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;

import java.util.Arrays;
import java.util.Collection;

88



import java.util.Iterator;

import java.util.list;

import java.util.Random;

import java.util.function.Function;
import java.util.stream.IntStream;
import java.util.stream.Stream;

import example.util.Calculator;

import org.junit.jupiter.api.DynamicNode;

import org.junit.jupiter.api.DynamicTest;

import org.junit.jupiter.api.Tag;

import org.junit.jupiter.api.TestFactory;

import org.junit.jupiter.api.function.ThrowingConsumer;

class DynamicTestsDemo {

(2,

(ZI

(2I

private final Calculator calculator = new Calculator();

// This method will not be executed but produce a warning
@TestFactory
List<String> dynamicTestsWithInvalidReturnType() {

return Arrays.asList("Hello");

}

@TestFactory
Collection<DynamicTest> dynamicTestsFromCollection() {
return Arrays.aslList(
dynamicTest("1st dynamic test", () -> assertTrue(isPalindrome("madam"))),
dynamicTest("2nd dynamic test", () -> assertEquals(4, calculator.multiply
2)))
)
}

@TestFactory
Iterable<DynamicTest> dynamicTestsFromIterable() {
return Arrays.aslist(
dynamicTest("3rd dynamic test", () -> assertTrue(isPalindrome("madam"))),
dynamicTest("4th dynamic test", () -> assertEquals(4, calculator.multiply
2)))
)i
}

@TestFactory
Iterator<DynamicTest> dynamicTestsFromIterator() {
return Arrays.aslist(
dynamicTest("5th dynamic test", () -> assertTrue(isPalindrome("madam"))),
dynamicTest("6th dynamic test", () -> assertEquals(4, calculator.multiply
2)))
).iterator();
}

89



@TestFactory
DynamicTest[] dynamicTestsFromArray() {
return new DynamicTest[] {
dynamicTest("7th dynamic test", () -> assertTrue(isPalindrome("madam"))),
dynamicTest("8th dynamic test", () -> assertEquals(4, calculator.multiply
2)))
I
}

@TestFactory
Stream<DynamicTest> dynamicTestsFromStream() {
return Stream.of("racecar", "radar", "mom", "dad")
.map(text -> dynamicTest(text, () -> assertTrue(isPalindrome(text))));

}

@TestFactory
Stream<DynamicTest> dynamicTestsFromIntStream() {
// Generates tests for the first 10 even integers.
return IntStream.iterate(®, n -> n + 2).1imit(10)
.mapToObj(n -> dynamicTest("test" + n, () -> assertEquals(@, n % 2)));

}

@TestFactory
Stream<DynamicTest> generateRandomNumberOfTests() {

// Generates random positive integers between @ and 100 until
// a number evenly divisible by 7 is encountered.
Iterator<Integer> inputGenerator = new Iterator<Integer>() {

Random random = new Random();
int current;

@Override

public boolean hasNext() {
current = random.nextInt(100);
return current % 7 '= 0;

}

@0verride
public Integer next() {
return current;
}
I

// Generates display names like: input:5, input:37, input:85, etc.
Function<Integer, String> displayNameGenerator = (input) -> "input:" + input;

// Executes tests based on the current input value.
ThrowingConsumer<Integer> testExecutor = (input) -> assertTrue(input % 7 !=



// Returns a stream of dynamic tests.

return DynamicTest.stream(inputGenerator, displayNameGenerator, testExecutor);

}

@TestFactory

Stream<DynamicTest> dynamicTestsFromStreamFactoryMethod() {
// Stream of palindromes to check
Stream<String> inputStream = Stream.of("racecar", "radar",

momn’ "dad");

// Generates display names like: racecar is a palindrome
Function<String, String> displayNameGenerator = text -> text + " is a
palindrome";

// Executes tests based on the current input value.
ThrowingConsumer<String> testExecutor = text -> assertTrue(isPalindrome(
text));

// Returns a stream of dynamic tests.
return DynamicTest.stream(inputStream, displayNameGenerator, testExecutor);

}

@TestFactory
Stream<DynamicNode> dynamicTestsWithContainers() {
return Stream.of("A", "B", "C")

.map(input -> dynamicContainer("Container " + input, Stream.of(
dynamicTest("not null", () -> assertNotNull(input)),
dynamicContainer("properties”, Stream.of(

dynamicTest("length > 0", () -> assertTrue(input.length() > 0)),
dynamicTest("not empty", () -> assertFalse(input.isEmpty()))

)
)));
}

@TestFactory
DynamicNode dynamicNodeSingleTest() {
return dynamicTest("'pop' is a palindrome", () -> assertTrue(isPalindrome
("pop™)));
}

@TestFactory
DynamicNode dynamicNodeSingleContainer() {
return dynamicContainer("palindromes",
Stream.of("racecar", "radar", "mom", "dad")
.map(text -> dynamicTest(text, () -> assertTrue(isPalindrome(text)))

));

91



Dynamic Tests and Named

In some cases, it can be more natural to specify inputs together with a descriptive name using the
Named API and the corresponding stream() factory methods on DynamicTest as shown in the first
example below. The second example takes it one step further and allows to provide the code block
that should be executed by implementing the Executable interface along with Named via the
NamedExecutable base class.

import static example.util.StringUtils.isPalindrome;
import static org.junit.jupiter.api.Assertions.assertTrue;
import static org.junit.jupiter.api.Named.named;

import java.util.stream.Stream;

import org.junit.jupiter.api.DynamicTest;
import org.junit.jupiter.api.NamedExecutable;
import org.junit.jupiter.api.TestFactory;

public class DynamicTestsNamedDemo {

@TestFactory
Stream<DynamicTest> dynamicTestsFromStreamFactoryMethodWithNames() {
// Stream of palindromes to check
var inputStream = Stream.of(
named("racecar is a palindrome", "racecar"),
named("radar is also a palindrome", "radar"),
named("mom also seems to be a palindrome", "mom"),
named("dad is yet another palindrome", "dad")

);

// Returns a stream of dynamic tests.
return DynamicTest.stream(inputStream, text -> assertTrue(isPalindrome(
text)));
}

@TestFactory
Stream<DynamicTest> dynamicTestsFromStreamFactoryMethodWithNamedExecutables() {
// Stream of palindromes to check
var inputStream = Stream.of("racecar", "radar",
.map(PalindromeNamedExecutable: :new);

momu , "dad")

// Returns a stream of dynamic tests based on NamedExecutables.
return DynamicTest.stream(inputStream);

}

record PalindromeNamedExecutable(String text) implements NamedExecutable {
@0verride

public String getName() {
return String.format("'%s' is a palindrome", text);

92


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Named.html

@0verride
public void execute() {
assertTrue(isPalindrome(text));

}

URI Test Sources for Dynamic Tests

The JUnit Platform provides TestSource, a representation of the source of a test or container used to
navigate to its location by IDEs and build tools.

The TestSource for a dynamic test or dynamic container can be constructed from a java.net.URI
which can be supplied via the DynamicTest.dynamicTest(String, URI, Executable) or
DynamicContainer.dynamicContainer(String, URI, Stream) factory method, respectively. The URI will
be converted to one of the following TestSource implementations.

ClasspathResourceSource

If the URI contains the classpath scheme — for example,
classpath:/test/foo.xml?1ine=20,column=2.

DirectorySource

If the URI represents a directory present in the file system.

FileSource

If the URI represents a file present in the file system.

MethodSource

If the URI contains the method scheme and the fully qualified method name (FQMN)— for
example, method:org.junit.Foo#bar(java.lang.String, java.lang.String[]). Please refer to the
Javadoc for DiscoverySelectors.selectMethod for the supported formats for a FQMN.

ClassSource

If the URI contains the class scheme and the fully qualified class name—for example,
class:org.junit.Foo?1line=42.

UriSource

If none of the above TestSource implementations are applicable.

Timeouts

The @Timeout annotation allows one to declare that a test, test factory, test template, or lifecycle
method should fail if its execution time exceeds a given duration. The time unit for the duration
defaults to seconds but is configurable.

The following example shows how @Timeout is applied to lifecycle and test methods.

93


attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectMethod(java.lang.String)

class TimeoutDemo {

@BeforeEach
@Timeout(5)
void setUp() {
// fails if execution time exceeds 5 seconds

}

@Test
@Timeout(value = 500, unit = TimeUnit.MILLISECONDS)
void failsIfExecutionTimeExceeds500Milliseconds() {

// fails if execution time exceeds 500 milliseconds

}

@Test
@Timeout(value = 500, unit = TimeUnit.MILLISECONDS, threadMode = ThreadMode
.SEPARATE _THREAD)
void failsIfExecutionTimeExceeds500MillisecondsInSeparateThread() {
// fails if execution time exceeds 500 milliseconds, the test code is executed
in a separate thread

}

To apply the same timeout to all test methods within a test class and all of its @Nested classes, you
can declare the @Timeout annotation at the class level. It will then be applied to all test, test factory,
and test template methods within that class and its @Nested classes unless overridden by a @Timeout
annotation on a specific method or @Nested class. Please note that @Timeout annotations declared at
the class level are not applied to lifecycle methods.

Declaring @Timeout on a @TestFactory method checks that the factory method returns within the
specified duration but does not verify the execution time of each individual DynamicTest generated
by the factory. Please use assertTimeout() or assertTimeoutPreemptively() for that purpose.

If @Timeout is present on a @TestTemplate method — for example, a @RepeatedTest or
@ParameterizedTest — each invocation will have the given timeout applied to it.

Thread mode

The timeout can be applied using one of the following three thread modes: SAME_THREAD,
SEPARATE_THREAD, or INFERRED.

When SAME_THREAD is used, the execution of the annotated method proceeds in the main thread of
the test. If the timeout is exceeded, the main thread is interrupted from another thread. This is done
to ensure interoperability with frameworks such as Spring that make use of mechanisms that are
sensitive to the currently running thread — for example, ThreadLocal transaction management.

On the contrary when SEPARATE_THREAD is used, like the assertTimeoutPreemptively() assertion, the
execution of the annotated method proceeds in a separate thread, this can lead to undesirable side

94



effects, see Preemptive Timeouts with assertTimeoutPreemptively().

When INFERRED (default) thread mode is wused, the thread mode is resolved via the
junit.jupiter.execution.timeout.thread.mode.default configuration parameter. If the provided
configuration parameter is invalid or not present then SAME_THREAD is used as fallback.

Default Timeouts

The following configuration parameters can be used to specify default timeouts for all methods of a
certain category unless they or an enclosing test class is annotated with @Timeout:

junit.jupiter.execution.timeout.default

Default timeout for all testable and lifecycle methods

junit.jupiter.execution.timeout.testable.method.default

Default timeout for all testable methods

junit.jupiter.execution.timeout.test.method.default

Default timeout for @Test methods

junit.jupiter.execution.timeout.testtemplate.method.default

Default timeout for @TestTemplate methods

junit.jupiter.execution.timeout.testfactory.method.default

Default timeout for @TestFactory methods

junit.jupiter.execution.timeout.lifecycle.method.default

Default timeout for all lifecycle methods

junit.jupiter.execution.timeout.beforeall.method.default

Default timeout for @BeforeAll methods

junit.jupiter.execution.timeout.beforeeach.method.default

Default timeout for @BeforeEach methods

junit.jupiter.execution.timeout.aftereach.method.default

Default timeout for @AfterEach methods

junit.jupiter.execution.timeout.afterall.method.default

Default timeout for @AfterAll methods

More specific configuration parameters override less specific ones. For example,
junit.jupiter.execution.timeout.test.method.default overrides
junit.jupiter.execution.timeout.testable.method.default which overrides
junit.jupiter.execution.timeout.default.

The values of such configuration parameters must be in the following, case-insensitive format:
<number> [ns|ps|ms|s|m|h|d]. The space between the number and the unit may be omitted.
Specifying no unit is equivalent to using seconds.

95



Example timeout configuration parameter values

Parameter value Equivalent annotation

42

42 ns
42 ps
42 ms
47 s
42 m
42 h
42 d

@Timeout(42)

@Timeout(value
@Timeout(value
@Timeout(value
@Timeout(value
@Timeout(value
@Timeout(value

@Timeout(value

42,
42,
42,
42,
42,
42,
42,

unit
unit
unit
unit
unit
unit

unit

Using @Timeout for Polling Tests

When dealing with asynchronous code, it is common to write tests that poll while waiting for
something to happen before performing any assertions. In some cases you can rewrite the logic to
use a CountDownLatch or another synchronization mechanism, but sometimes that is not possible —
for example, if the subject under test sends a message to a channel in an external message broker
and assertions cannot be performed until the message has been successfully sent through the
channel. Asynchronous tests like these require some form of timeout to ensure they don’t hang the
test suite by executing indefinitely, as would be the case if an asynchronous message never gets

successfully delivered.

By configuring a timeout for an asynchronous test that polls, you can ensure that the test does not
execute indefinitely. The following example demonstrates how to achieve this with JUnit Jupiter’s
@Timeout annotation. This technique can be used to implement "poll until" logic very easily.

@Test

@Timeout(5) // Poll at most 5 seconds
void pollUntil() throws InterruptedException {
while (asynchronousResultNotAvailable()) {

}

// Obtain the asynchronous result and perform assertions

Debugging Timeouts

Registered Pre-Interrupt Callback extensions are called prior to invoking Thread.interrupt() on the
thread that is executing the timed out method. This allows to inspect the application state and
output additional information that might be helpful for diagnosing the cause of a timeout.

96

NANOSECONDS)
MICROSECONDS)
MILLISECONDS)
SECONDS)
MINUTES)
HOURS)

DAYS)

Thread.sleep(250); // custom poll interval

If you need more control over polling intervals and greater flexibility with
asynchronous tests, consider using a dedicated library such as Awaitility.


https://github.com/awaitility/awaitility

Thread Dump on Timeout

JUnit registers a default implementation of the Pre-Interrupt Callback extension point that dumps
the stacks of all threads to  System.out if enabled by  setting the
junit.jupiter.execution.timeout.threaddump.enabled configuration parameter to true.

Disable @Timeout Globally

When stepping through your code in a debug session, a fixed timeout limit may influence the result
of the test, e.g. mark the test as failed although all assertions were met.

JUnit Jupiter supports the junit.jupiter.execution.timeout.mode configuration parameter to
configure when timeouts are applied. There are three modes: enabled, disabled, and
disabled_on_debug. The default mode is enabled. A VM runtime is considered to run in debug mode
when one of its input parameters starts with -agentlib:jdwp or -Xrunjdwp. This heuristic is queried
by the disabled_on_debug mode.

Parallel Execution

By default, JUnit Jupiter tests are run sequentially in a single thread. Running tests in parallel — for
example, to speed up execution—is available as an opt-in feature since version 5.3. To enable
parallel execution, set the junit.jupiter.execution.parallel.enabled configuration parameter to
true —for example, in junit-platform.properties (see Configuration Parameters for other options).

Please note that enabling this property is only the first step required to execute tests in parallel. If
enabled, test classes and methods will still be executed sequentially by default. Whether or not a
node in the test tree is executed concurrently is controlled by its execution mode. The following two
modes are available.

SAME_THREAD

Force execution in the same thread used by the parent. For example, when used on a test
method, the test method will be executed in the same thread as any @BeforeAll or @AfterAll
methods of the containing test class.

CONCURRENT

Execute concurrently unless a resource lock forces execution in the same thread.

By default, nodes in the test tree use the SAME_THREAD execution mode. You can change the default by
setting the junit.jupiter.execution.parallel.mode.default configuration parameter. Alternatively,
you can use the @Execution annotation to change the execution mode for the annotated element and
its subelements (if any) which allows you to activate parallel execution for individual test classes,
one by one.

Configuration parameters to execute all tests in parallel

junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = concurrent

The default execution mode is applied to all nodes of the test tree with a few notable exceptions,

97


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/Execution.html

namely test classes that use the Lifecycle.PER_CLASS mode or a MethodOrderer. In the former case,
test authors have to ensure that the test class is thread-safe; in the latter, concurrent execution
might conflict with the configured execution order. Thus, in both cases, test methods in such test
classes are only executed concurrently if the @Execution(CONCURRENT) annotation is present on the
test class or method.

You can use the @Execution annotation to explicitly configure the execution mode for a test class or
method:

* Copyright 2015-2025 the original author or authors.

A1l rights reserved. This program and the accompanying materials are
* made available under the terms of the Eclipse Public License v2.0 which
* accompanies this distribution and is available at

* https://www.eclipse.org/legal/epl-v20.html
*/

package example;

import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.parallel.Execution;
import org.junit.jupiter.api.parallel.ExecutionMode;

@Execution(ExecutionMode.CONCURRENT)
class ExplicitExecutionModeDemo {

@Test
void testA() {
// concurrent

}

@Test
@Execution(ExecutionMode.SAME THREAD)
void testB() {

// overrides to same_thread

}

This allows test classes or methods to opt in or out of concurrent execution regardless of the
globally configured default.

When parallel execution is enabled and a default ClassOrderer is registered (see Class Order for
details), top-level test classes will initially be sorted accordingly and scheduled in that order.
However, they are not guaranteed to be started in exactly that order since the threads they are
executed on are not controlled directly by JUnit.

All nodes of the test tree that are configured with the CONCURRENT execution mode will be executed

98


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/MethodOrderer.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassOrderer.html

fully in parallel according to the provided configuration while observing the declarative
synchronization mechanism. Please note that Capturing Standard Output/Error needs to be enabled
separately.

In addition, you can configure the default execution mode for top-level classes by setting the
junit.jupiter.execution.parallel.mode.classes.default configuration parameter. By combining
both configuration parameters, you can configure classes to run in parallel but their methods in the
same thread:

Configuration parameters to execute top-level classes in parallel but methods in same thread

junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = concurrent

The opposite combination will run all methods within one class in parallel, but top-level classes will
run sequentially:

Configuration parameters to execute top-level classes sequentially but their methods in parallel

junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = concurrent
junit.jupiter.execution.parallel.mode.classes.default = same_thread

The following diagram illustrates how the execution of two top-level test classes A and B with two
test methods per class behaves for all four combinations of
junit.jupiter.execution.parallel.mode.default and
junit.jupiter.execution.parallel.mode.classes.default (see labels in first column).

99



(same_thread, same_thread)

(same_thread, concurrent)

(concurrent, same_thread)

(concurrent, concurrent)

0O threads | time —

Adtest1() Adtest2() B.test10) B.test2()

Atest1() Atest2()

B.test1() B.test2()

Adtest1() Butest10)

Adtest2() B.test2()
Adtest1()
Atest20)

Butest1()

B.test2()

Default execution mode configuration combinations

100



If the junit.jupiter.execution.parallel.mode.classes.default configuration parameter is not
explicitly set, the value for junit.jupiter.execution.parallel.mode.default will be used instead.

Configuration

Properties such as the desired parallelism and the maximum pool size can be configured using a
ParallelExecutionConfigurationStrategy. The JUnit Platform provides two implementations out of
the box: dynamic and fixed. Alternatively, you may implement a custom strategy.

To select a strategy, set the junit.jupiter.execution.parallel.config.strategy configuration
parameter to one of the following options.

dynamic
Computes the desired parallelism based on the number of available processors/cores multiplied
by the junit.jupiter.execution.parallel.config.dynamic.factor configuration parameter
(defaults to 1). The optional junit.jupiter.execution.parallel.config.dynamic.max-pool-size-
factor configuration parameter can be used to limit the maximum number of threads.

fixed

Uses the mandatory junit.jupiter.execution.parallel.config.fixed.parallelism configuration
parameter as the desired parallelism. The optional
junit.jupiter.execution.parallel.config.fixed.max-pool-size configuration parameter can be
used to limit the maximum number of threads.

custom

Allows you to specify a custom ParallelExecutionConfigurationStrategy implementation via the
mandatory junit.jupiter.execution.parallel.config.custom.class configuration parameter to
determine the desired configuration.

If no configuration strategy is set, JUnit Jupiter uses the dynamic configuration strategy with a factor
of 1. Consequently, the desired parallelism will be equal to the number of available
processors/cores.

Parallelism alone does not imply maximum number of concurrent threads

By default JUnit Jupiter does not guarantee that the number of concurrently
executing tests will not exceed the configured parallelism. For example, when
using one of the synchronization mechanisms described in the next section, the

o ForkJoinPool that is used behind the scenes may spawn additional threads to
ensure execution continues with sufficient parallelism. If you require such
guarantees, with Java 9+, it is possible to limit the maximum number of
concurrent threads by controlling the maximum pool size of the dynamic, fixed and
custom strategies.

Relevant properties

The following table lists relevant properties for configuring parallel execution. See Configuration
Parameters for details on how to set such properties.

101


attachment$api//org.junit.platform.engine/org/junit/platform/engine/support/hierarchical/ParallelExecutionConfigurationStrategy.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/support/hierarchical/ParallelExecutionConfigurationStrategy.html

Property

junit.jupiter.executio
n.parallel.enabled

junit.jupiter.executio
n.parallel.mode.defaul
t

junit.jupiter.executio
n.parallel.mode.classe
s.default

junit.jupiter.executio
n.parallel.config.stra
tegy

junit.jupiter.executio
n.parallel.config.dyna
mic.factor

junit.jupiter.executio
n.parallel.config.dyna
mic.max-pool-size-
factor

junit.jupiter.executio
n.parallel.config.dyna
mic.saturate

junit.jupiter.executio
n.parallel.config.fixe
d.parallelism

junit.jupiter.executio

n.parallel.config.fixe
d.max-pool-size

102

Description

Enable parallel test
execution

Default execution mode
of nodes in the test tree

Default execution mode
of top-level classes

Execution strategy for
desired parallelism and
maximum pool size

Factor to be multiplied
by the number of
available
processors/cores to
determine the desired
parallelism for the
dynamic configuration
strategy

Factor to be multiplied
by the number of
available
processors/cores and

the value of
junit.jupiter.executio
n.parallel.config.dyna

mic.factor to determine
the desired parallelism
for the dynamic
configuration strategy

Disable saturation of
the underlying fork-
join pool for the dynamic
configuration strategy

Desired parallelism for
the fixed configuration
strategy

Desired maximum pool
size of the underlying
fork-join pool for the
fixed configuration
strategy

Supported Values

* true

» false

e concurrent

* same_thread

* concurrent

* same_thread

* dynamic

* fixed

e custom

a positive decimal

number

a positive decimal
number, must  be
greater than or equal
t01.0

e true

e false

a positive integer

a positive integer, must
be greater than or
equal
junit.jupiter.executio
n.parallel.config.fixe
d.parallelism

Default Value

false

same_thread

same_thread

dynamic

256 + the value of
junit.jupiter.executio
n.parallel.config.dyna

mic.factor multiplied
by the number of
available
processors/cores

true

no default value

256 + the value of
junit.jupiter.executio
n.parallel.config.fixe
d.parallelism



Property Description Supported Values Default Value

junit.jupiter.executio Disable saturation of . true true
n.parallel.config.fixe e e T
d.saturate yme * false

join pool for the fixed
configuration strategy

junit.jupiter.executio Fully qualified class for example, no default value
n.parallel.config.cust a6 of the org.example.CustomStr
om.class .
ParallelExecutionConfig ategy
urationStrategy to be
used for the custom
configuration strategy
Synchronization

In addition to controlling the execution mode using the @Execution annotation, JUnit Jupiter
provides another annotation-based declarative synchronization mechanism. The @Resourcelock
annotation allows you to declare that a test class or method uses a specific shared resource that
requires synchronized access to ensure reliable test execution. The shared resource is identified by
a unique name which is a String. The name can be user-defined or one of the predefined constants
in Resources: SYSTEM_PROPERTIES, SYSTEM_OUT, SYSTEM_ERR, LOCALE, or TIME_ZONE.

In addition to declaring these shared resources statically, the @ResourceLock annotation has a
providers attribute that allows registering implementations of the ResourcelocksProvider interface
that can add shared resources dynamically at runtime. Note that resources declared statically with
@Resourcelock  annotation are combined with resources added dynamically by
ResourcelocksProvider implementations.

If the tests in the following example were run in parallel without the use of @Resourcelock, they
would be flaky. Sometimes they would pass, and at other times they would fail due to the inherent
race condition of writing and then reading the same JVM System Property.

When access to shared resources is declared using the @Resourcelock annotation, the JUnit Jupiter
engine uses this information to ensure that no conflicting tests are run in parallel. This guarantee
extends to lifecycle methods of a test class or method. For example, if a test method is annotated
with a @Resourcelock annotation, the "lock" will be acquired before any @BeforeEach methods are
executed and released after all @AfterEach methods have been executed.

Running tests in isolation

If most of your test classes can be run in parallel without any synchronization but

e you have some test classes that need to run in isolation, you can mark the latter
with the @Isolated annotation. Tests in such classes are executed sequentially
without any other tests running at the same time.

In addition to the String that uniquely identifies the shared resource, you may specify an access

mode. Two tests that require READ access to a shared resource may run in parallel with each other
but not while any other test that requires READ_WRITE access to the same shared resource is running.

103


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/Execution.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/Resources.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLocksProvider.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLocksProvider.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/Isolated.html

Declaring shared resources "statically" with 0Resourcelock annotation

@Execution(CONCURRENT)
class StaticSharedResourcesDemo {

private Properties backup;

@BeforeEach
void backup() {
backup = new Properties();
backup.putAl1(System.getProperties());
}

@AfterEach
void restore() {
System.setProperties(backup);

}

@Test

@ResourcelLock(value = SYSTEM_PROPERTIES, mode = READ)

void customPropertyIsNotSetByDefault() {
assertNull(System.getProperty("my.prop"));

}

@Test

@Resourcelock(value = SYSTEM_PROPERTIES, mode = READ_WRITE)

void canSetCustomPropertyToApple() {
System.setProperty("my.prop", "apple");
assertEquals("apple", System.getProperty("my.prop"));

}

@Test

@Resourcelock(value = SYSTEM_PROPERTIES, mode = READ_WRITE)

void canSetCustomPropertyToBanana() {
System.setProperty("my.prop", "banana");
assertEquals("banana", System.getProperty("my.prop"));

Adding shared resources "dynamically” with ResourcelocksProvider implementation

©@Execution(CONCURRENT)
@Resourcelock(providers = DynamicSharedResourcesDemo.Provider.class)
class DynamicSharedResourcesDemo {

private Properties backup;

@BeforeEach
void backup() {

104


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLocksProvider.html

backup = new Properties();
backup.putA11(System.getProperties());
}

@AfterEach
void restore() {
System.setProperties(backup);

}

@Test
void customPropertyIsNotSetByDefault() {
assertNull(System.getProperty("my.prop"));

}

@Test

void canSetCustomPropertyToApple() {
System.setProperty("my.prop", "apple");
assertEquals("apple”, System.getProperty("my.prop"));

}

@Test

void canSetCustomPropertyToBanana() {
System.setProperty("my.prop", "banana");
assertEquals("banana", System.getProperty("my.prop"));

}

static class Provider implements ResourcelLocksProvider {

@0verride
public Set<Lock> provideForMethod(List<Class<?>> enclosingInstanceTypes,
Class<?> test(Class,
Method testMethod) {
ResourceAccessMode mode = testMethod.getName().startsWith("canSet") ?
READ_WRITE : READ;
return Collections.singleton(new Lock(SYSTEM_PROPERTIES, mode));

}

Also, "static" shared resources can be declared for direct child nodes via the target attribute in the
@Resourcelock annotation, the attribute accepts a value from the ResourcelockTarget enum.

Specifying target = CHILDREN in a class-level @Resourcelock annotation has the same semantics as
adding an annotation with the same value and mode to each test method and nested test class
declared in this class.

This may improve parallelization when a test class declares a READ lock, but only a few methods
hold a READ_WRITE lock.

105


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLockTarget.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html

Tests in the following example would run in the SAME_THREAD if the @Resourcelock didn’t have target
= CHILDREN. This is because the test class declares a READ shared resource, but one test method holds
a READ_WRITE lock, which would force the SAME_THREAD execution mode for all the test methods.

Declaring shared resources for child nodes with target attribute

@Execution(CONCURRENT)
@Resourcelock(value = "a", mode = READ, target = CHILDREN)
public class ChildrenSharedResourcesDemo {

@ResourcelLock(value = "a", mode = READ_WRITE)

@Test

void test1() throws InterruptedException {
Thread.sleep(2000L);

}

@Test

void test2() throws InterruptedException {
Thread.sleep(2000L);

}

@Test

void test3() throws InterruptedException {
Thread.sleep(2000L);

}

@Test
void test4() throws InterruptedException {
Thread.sleep(2000L);

}

@Test
void test5() throws InterruptedException {
Thread.sleep(2000L);

}

Built-in Extensions

While the JUnit team encourages reusable extensions to be packaged and maintained in separate
libraries, JUnit Jupiter includes a few user-facing extension implementations that are considered so
generally useful that users shouldn’t have to add another dependency.

The @TempDir Extension

The built-in TempDirectory extension is used to create and clean up a temporary directory for an
individual test or all tests in a test class. It is registered by default. To use it, annotate a non-final,
unassigned field of type java.nio.file.Path or java.io.File with @TempDir or add a parameter of

106


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/parallel/ResourceLock.html
https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/TempDirectory.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/io/TempDir.html

type java.nio.file.Path or java.io.File annotated with @TempDir to a test class constructor, lifecycle
method, or test method.

For example, the following test declares a parameter annotated with @TempDir for a single test
method, creates and writes to a file in the temporary directory, and checks its content.

A test method that requires a temporary directory

@Test
void writeItemsToFile(@TempDir Path tempDir) throws IOException {
Path file = tempDir.resolve("test.txt");

new ListWriter(file).write("a", "b", "c¢");

assertEquals(singletonList("a,b,c"), Files.readAllLines(file));

You can inject multiple temporary directories by specifying multiple annotated parameters.

A test method that requires multiple temporary directories

@Test
void copyFileFromSourceToTarget(@TempDir Path source, @TempDir Path target) throws
I0Exception {

Path sourceFile = source.resolve("test.txt");

new ListWriter(sourceFile).write("a", "b", "c");

Path targetFile = Files.copy(sourceFile, target.resolve("test.txt"));

assertNotEquals(sourceFile, targetFile);
assertEquals(singletonlList("a,b,c"), Files.readAllLines(targetFile));

To revert to the old behavior of using a single temporary directory for the entire
A test class or method (depending on which level the annotation is used), you can set

the junit.jupiter.tempdir.scope configuration parameter to per_context. However,

please note that this option is deprecated and will be removed in a future release.

The following example stores a shared temporary directory in a static field. This allows the same
sharedTempDir to be used in all lifecycle methods and test methods of the test class. For better
isolation, you should use an instance field or constructor injection so that each test method uses a
separate directory.

A test class that shares a temporary directory across test methods
class SharedTempDirectoryDemo {
@TempDir

static Path sharedTempDir;

107



@Test
void writeItemsToFile() throws IOException {
Path file = sharedTempDir.resolve("test.txt");

new ListWriter(file).write("a", "b", "c");

assertEquals(singletonList("a,b,c"), Files.readAllLines(file));

@Test
void anotherTestThatUsesTheSameTempDir() {
// use sharedTempDir

}

The @TempDir annotation has an optional cleanup attribute that can be set to either NEVER, ON_SUCCESS,
or ALWAYS. If the cleanup mode is set to NEVER, the temporary directory will not be deleted after the
test completes. If it is set to ON_SUCCESS, the temporary directory will only be deleted after the test if
the test completed successfully.

The default cleanup mode is ALWAYS. You can use the junit.jupiter.tempdir.cleanup.mode.default
configuration parameter to override this default.

A test class with a temporary directory that doesn’t get cleaned up
class CleanupModeDemo {

@Test
void fileTest(@TempDir(cleanup = ON_SUCCESS) Path tempDir) {
// perform test

}

@TempDir supports the programmatic creation of temporary directories via the optional factory
attribute. This is typically used to gain control over the temporary directory creation, like defining
the parent directory or the file system that should be used.

Factories can be created by implementing TempDirFactory. Implementations must provide a no-args
constructor and should not make any assumptions regarding when and how many times they are
instantiated, but they can assume that their createTempDirectory(:--) and close() methods will both
be called once per instance, in this order, and from the same thread.

The default implementation available in Jupiter delegates directory creation to
java.nio.file.Files::createTempDirectory which uses the default file system and the system’s
temporary directory as the parent directory. It passes junit- as the prefix string of the generated
directory name to help identify it as a created by JUnit.

108



The following example defines a factory that uses the test name as the directory name prefix
instead of the junit constant value.

A test class with a temporary directory having the test name as the directory name prefix
class TempDirFactoryDemo {

@Test

void factoryTest(@TempDir(factory = Factory.class) Path tempDir) {

assertTrue(tempDir.getFileName().toString().startsWith("factoryTest"));
}

static class Factory implements TempDirFactory {

@0verride

public Path createTempDirectory(AnnotatedElementContext elementContext,
ExtensionContext extensionContext)

throws IOException {

return Files.createTempDirectory(extensionContext.getRequiredTestMethod
().getName());

}

It is also possible to use an in-memory file system like Jimfs for the creation of the temporary
directory. The following example demonstrates how to achieve that.

A test class with a temporary directory created with the Jimfs in-memory file system
class InMemoryTempDirDemo {

@Test

void test(@TempDir(factory = JimfsTempDirFactory.class) Path tempDir) {
// perform test

}
static class JimfsTempDirFactory implements TempDirFactory {

private final FileSystem fileSystem = Jimfs.newFileSystem(Configuration.
unix());

@0verride

public Path createTempDirectory(AnnotatedElementContext elementContext,
ExtensionContext extensionContext)

throws IOException {
return Files.createTempDirectory(fileSystem.getPath("/"), "junit-");

109


https://google.github.io/jimfs/

@0verride
public void close() throws IOException {
fileSystem.close();

}

@TempDir can also be used as a meta-annotation to reduce repetition. The following code listing
shows how to create a custom @JimfsTempDir annotation that can be used as a drop-in replacement
for @TempDir(factory = JimfsTempDirFactory.class).

A custom annotation meta-annotated with @TempDir

@Target({ ElementType.ANNOTATION_TYPE, ElementType.FIELD, ElementType.PARAMETER })
@Retention(RetentionPolicy.RUNTIME)

@TempDir(factory = JimfsTempDirFactory.class)

@interface JimfsTempDir {

}

The following example demonstrates how to use the custom @JimfsTempDir annotation.

A test class using the custom annotation
class JimfsTempDirAnnotationDemo {

@Test

void test(@JimfsTempDir Path tempDir) {
// perform test

}

Meta-annotations or additional annotations on the field or parameter the TempDir annotation is
declared on might expose additional attributes to configure the factory. Such annotations and
related attributes can be accessed via the AnnotatedElementContext parameter of the
createTempDirectory(::-) method.

You can use the junit.jupiter.tempdir.factory.default configuration parameter to specify the fully
qualified class name of the TempDirFactory you would like to use by default. Just like for factories
configured via the factory attribute of the @TempDir annotation, the supplied class has to implement
the TempDirFactory interface. The default factory will be used for all @TempDir annotations unless the
factory attribute of the annotation specifies a different factory.

In summary, the factory for a temporary directory is determined according to the following
precedence rules:

1. The factory attribute of the @TempDir annotation, if present

110



2. The default TempDirFactory configured via the configuration parameter, if present

3. Otherwise, org.junit.jupiter.api.io.TempDirFactory$Standard will be used.

The @AutoClose Extension

The built-in AutoCloseExtension automatically closes resources associated with fields. It is registered
by default. To use it, annotate a field in a test class with @AutoClose.

@AutoClose fields may be either static or non-static. If the value of an @AutoClose field is null when
it is evaluated the field will be ignored, but a warning message will be logged to inform you.

By default, @AutoClose expects the value of the annotated field to implement a close() method that
will be invoked to close the resource. However, developers can customize the name of the close
method via the value attribute. For example, @AutoClose("shutdown") instructs JUnit to look for a
shutdown() method to close the resource.

@AutoClose fields are inherited from superclasses. Furthermore, @AutoClose fields from subclasses
will be closed before @AutoClose fields in superclasses.

When multiple @AutoClose fields exist within a given test class, the order in which the resources are
closed depends on an algorithm that is deterministic but intentionally nonobvious. This ensures
that subsequent runs of a test suite close resources in the same order, thereby allowing for
repeatable builds.

The AutoCloseExtension implements the AfterAllCallback and TestInstancePreDestroyCallback
extension APIs. Consequently, a static @AutoClose field will be closed after all tests in the current
test class have completed, effectively after @AfterAll methods have executed for the test class. A
non-static @AutoClose field will be closed before the current test class instance is destroyed.
Specifically, if the test class is configured with @TestInstance(Lifecycle.PER_METHOD) semantics, a
non-static @AutoClose field will be closed after the execution of each test method, test factory
method, or test template method. However, if the test class is configured with
@TestInstance(Lifecycle.PER_CLASS) semantics, a non-static @AutoClose field will not be closed until
the current test class instance is no longer needed, which means after @AfterAll methods and after
all static @AutoClose fields have been closed.

The following example demonstrates how to annotate an instance field with @AutoClose so that the
resource is automatically closed after test execution. In this example, we assume that the default
@TestInstance(Lifecycle.PER_METHOD) semantics apply.

A test class using @AutoClose to close a resource
class AutoCloseDemo {

@AutoClose @
WebClient webClient = new WebClient(); @

String serverUrl = // specify server URL ...

@Test
void getProductList() {

111


https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/AutoCloseExtension.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/AutoClose.html

// Use WebClient to connect to web server and verify response
assertEquals(200, webClient.get(serverUrl + "/products").getResponseStatus());

@ Annotate an instance field with @AutoClose.

@ WebClient implements java.lang.AutoCloseable which defines a close() method that will be
invoked after each @Test method.

112



Migrating from JUnit 4

Although the JUnit Jupiter programming model and extension model do not support JUnit 4
features such as Rules and Runners natively, it is not expected that source code maintainers will
need to update all of their existing tests, test extensions, and custom build test infrastructure to
migrate to JUnit Jupiter.

Instead, JUnit provides a gentle migration path via a JUnit Vintage test engine which allows existing
tests based on JUnit 3 and JUnit 4 to be executed using the JUnit Platform infrastructure. Since all
classes and annotations specific to JUnit Jupiter reside under the org.junit.jupiter base package,
having both JUnit 4 and JUnit Jupiter in the classpath does not lead to any conflicts. It is therefore
safe to maintain existing JUnit 4 tests alongside JUnit Jupiter tests. Furthermore, since the JUnit
team will continue to provide maintenance and bug fix releases for the JUnit 4.x baseline,
developers have plenty of time to migrate to JUnit Jupiter on their own schedule.

Running JUnit 4 Tests on the JUnit Platform

Make sure that the junit-vintage-engine artifact is in your test runtime path. In that case JUnit 3
and JUnit 4 tests will automatically be picked up by the JUnit Platform launcher.

See the example projects in the junit-examples repository to find out how this is done with Gradle
and Maven.

Categories Support

For test classes or methods that are annotated with @Category, the JUnit Vintage test engine exposes
the category’s fully qualified class name as a tag for the corresponding test class or test method. For
example, if a test method is annotated with @Category(Example.class), it will be tagged with
"com.acme.Example”. Similar to the Categories runner in JUnit 4, this information can be used to
filter the discovered tests before executing them (see Running Tests for details).

Parallel Execution

The JUnit Vintage test engine supports parallel execution of top-level test classes and test methods,
allowing existing JUnit 3 and JUnit 4 tests to benefit from improved performance through
concurrent test execution. It can be enabled and configured using the following configuration
parameters:

junit.vintage.execution.parallel.enabled=true|false

Enable/disable parallel execution (defaults to false). Requires opt-in for classes or methods to be
executed in parallel using the configuration parameters below.

junit.vintage.execution.parallel.classes=true|false

Enable/disable parallel execution of test classes (defaults to false).

junit.vintage.execution.parallel.methods=true|false

Enable/disable parallel execution of test methods (defaults to false).

113


https://github.com/junit-team/junit-examples

junit.vintage.execution.parallel.pool-size=<number>

Specifies the size of the thread pool to be used for parallel execution. By default, the number of
available processors is used.

Parallelization at Class Level

Let’s assume we have two test classes FooTest and BarTest with each class containing three unit
tests. Now, let’s enable parallel execution of test classes:

junit.vintage.execution.parallel.enabled=true
junit.vintage.execution.parallel.classes=true

With this setup, the VintageTestEngine will use two different threads, one for each test class:

BarTest::test1
FooTest::test1
BarTest::test2
FooTest::test2
BarTest::test3
FooTest::test3

ForkJoinPool-1-worker-1
ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-1
ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-1
ForkJoinPool-1-worker-2

Parallelization at Method Level

Alternatively, we can enable parallel test execution at a method level, rather than the class level:

junit.vintage.execution.parallel.enabled=true
junit.vintage.execution.parallel.methods=true

Therefore, the test methods within each class will be executed in parallel, while different test
classes will be executed sequentially:

BarTest::test1
BarTest::test2
BarTest::test3

ForkJoinPool-1-worker-1
ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-3

FooTest: :test1
FooTest: :test?2
FooTest: :test3

ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-1

Full Parallelization

Finally, we can also enable parallelization at both class and method level:

junit.vintage.execution.parallel.enabled=true

114



junit.vintage.execution.parallel.classes=true
junit.vintage.execution.parallel.methods=true

With these properties set, the VintageTestEngine will execute all tests classes and methods in
parallel, potentially significantly reducing the overall test suite execution time:

FooTest::test2
BarTest::test3
FooTest::test1
FooTest::test3
BarTest::test2
BarTest::test1

ForkJoinPool-1-worker-6
ForkJoinPool-1-worker-7
ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-8
ForkJoinPool-1-worker-5
ForkJoinPool-1-worker-4

Configuring the Pool Size

The default thread pool size is equal to the number of available processors. However, we can also
configure the pool size explicitly:

junit.vintage.execution.parallel.enabled=true
junit.vintage.execution.parallel.classes=true
junit.vintage.execution.parallel.methods=true
junit.vintage.execution.parallel.pool-size=4

For instance, if we update our previous example that uses full parallelization and configure the
pool size to four, we can expect to see our six test methods executed with a parallelism of four:

FooTest::test1
BarTest::test2
BarTest::test1
BarTest::test3
FooTest::test2
FooTest::test3

ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-4
ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-4
ForkJoinPool-1-worker-2
ForkJoinPool-1-worker-3

As we can see, even though we set the thread pool size was four, only three threads were used in
this case. This happens because the pool adjusts the number of active threads based on workload
and system needs.

Sequential Execution
On the other hand, if we disable parallel execution, the VintageTestEngine will execute all tests

sequentially, regardless of the other properties:

junit.vintage.execution.parallel.enabled=false
junit.vintage.execution.parallel.classes=true
junit.vintage.execution.parallel.methods=true

115



Similarly, tests will be executed sequentially if you enable parallel execution in general but enable
neither class-level nor method-level parallelization.

Migration Tips

The following are topics that you should be aware of when migrating existing JUnit 4 tests to JUnit
Jupiter.

* Annotations reside in the org.junit.jupiter.api package.

» Assertions reside in org.junit.jupiter.api.Assertions.

> Note that you may continue to use assertion methods from org.junit.Assert or any other
assertion library such as Assert], Hamcrest, Truth, etc.

* Assumptions reside in org.junit.jupiter.api.Assumptions.

o Note that JUnit Jupiter 5.4 and later versions support methods from JUnit 4’s
org.junit.Assume class for assumptions. Specifically, JUnit Jupiter supports JUnit 4’s
AssumptionViolatedException to signal that a test should be aborted instead of marked as a
failure.

» @Before and @After no longer exist; use @BeforeEach and @AfterEach instead.
» @BeforeClass and @AfterClass no longer exist; use @BeforeAll and @AfterAll instead.
 @Ignore no longer exists: use @Disabled or one of the other built-in execution conditions instead
o See also JUnit 4 @Ignore Support.
» @Category no longer exists; use @Tag instead.
* @RunWith no longer exists; superseded by @ExtendWith.
o For @RunWith(Enclosed.class) use @Nested.
o For @RunWith(Parameterized.class) see Parameterized test classes.
* @Rule and @ClassRule no longer exist; superseded by @ExtendWith and @RegisterExtension.
o See also Limited JUnit 4 Rule Support.

* @Test(expected = ) and the ExpectedException rule no longer exist; use
Assertions.assertThrows(::+) instead.

o See Limited JUnit 4 Rule Support if you still need to use ExpectedException.

* Assertions and assumptions in JUnit Jupiter accept the failure message as their last argument
instead of the first one.

o See Failure Message Arguments for details.

Parameterized test classes

Unless @UseParametersRunnerFactory is used, a JUnit 4 parameterized test class can be converted into
a JUnit Jupiter @ParameterizedClass by following these steps:

1. Replace @RunWith(Parameterized.class) with @Parameterized(lass.

2. Add a class-level @MethodSource("methodName") annotation where methodName is the name of the

116


https://assertj.github.io/doc/
https://hamcrest.org/JavaHamcrest/
https://truth.dev/

method annotated with @Parameters and remove the @Parameters annotation from the method.

. Replace @BeforeParam and @AfterParam with @BeforeParameterizedClassInvocation and
@AfterParameterizedClassInvocation, respectively, if there are any methods with such
annotations.

. Change the imports of the @Test and @Parameter annotations to use the org.junit.jupiter.params
package.

. Change assertions etc. to use the org.junit.jupiter.api package as usual.

. Optionally, remove all public modifiers from the class and its methods and fields.

Before

@RunWith(Parameterized.class)
public class JUnit4ParameterizedClassTests {

@Parameterized.Parameters
public static Iterable<Object[]> data() {

return Arrays.asList(new Object[][] { { 1, "foo" }, { 2, "bar" } });
}

@Parameterized.Parameter(0)
public int number;

@Parameterized.Parameter(1)
public String text;

©Parameterized.BeforeParam
public static void before(int number, String text) {

}

@Parameterized.AfterParam
public static void after() {

}

@org.junit.Test
public void someTest() {
}

@org.junit.Test
public void anotherTest() {
}

After

@ParameterizedClass
@MethodSource("data")
class JupiterParameterizedClassTests {

117



static Iterable<Object[]> data() {
return Arrays.asList(new Object[][] { { 1, "foo" }, { 2, "bar" } });

}

@org.junit.jupiter.params.Parameter(0)
int number;

@org.junit.jupiter.params.Parameter(1)
String text;

@BeforeParameterizedClassInvocation
static void before(int number, String text) {

}

@AfterParameterizedClassInvocation
static void after() {
}

@org.junit.jupiter.api.Test
void someTest() {

}

@org.junit.jupiter.api.Test
void anotherTest() {
}

Limited JUnit 4 Rule Support

As stated above, JUnit Jupiter does not and will not support JUnit 4 rules natively. The JUnit team
realizes, however, that many organizations, especially large ones, are likely to have large JUnit 4
code bases that make use of custom rules. To serve these organizations and enable a gradual
migration path the JUnit team has decided to support a selection of JUnit 4 rules verbatim within
JUnit Jupiter. This support is based on adapters and is limited to those rules that are semantically
compatible to the JUnit Jupiter extension model, i.e. those that do not completely change the overall
execution flow of the test.

The junit-jupiter-migrationsupport module from JUnit Jupiter currently supports the following
three Rule types including subclasses of these types:

* org.junit.rules.ExternalResource (including org.junit.rules.TemporaryFolder)

* org.junit.rules.Verifier (including org.junit.rules.ErrorCollector)

* org.junit.rules.ExpectedException
As in JUnit 4, Rule-annotated fields as well as methods are supported. By using these class-level

extensions on a test class such Rule implementations in legacy code bases can be left unchanged
including the JUnit 4 rule import statements.

118



This limited form of Rule support can be switched on by the class-level annotation
@EnableRuleMigrationSupport. This annotation is a composed annotation which enables all rule
migration support extensions: VerifierSupport, ExternalResourceSupport, and
ExpectedExceptionSupport. You may alternatively choose to annotate your test class with
@EnableJUnit4MigrationSupport which registers migration support for rules and JUnit 4’s @Ignore
annotation (see JUnit 4 @Ignore Support).

However, if you intend to develop a new extension for JUnit Jupiter please use the new extension
model of JUnit Jupiter instead of the rule-based model of JUnit 4.

JUnit 4 @Ignore Support

In order to provide a smooth migration path from JUnit 4 to JUnit Jupiter, the junit-jupiter-
migrationsupport module provides support for JUnit 4’s @Ignore annotation analogous to Jupiter’s
@Disabled annotation.

To use @Ignore with JUnit Jupiter based tests, configure a test dependency on the junit-jupiter-
migrationsupport module in vyour build and then annotate your test class with
@ExtendWith(IgnoreCondition.class) or @EnableJUnit4MigrationSupport (which automatically
registers the IgnoreCondition along with Limited JUnit 4 Rule Support). The IgnoreCondition is an
ExecutionCondition that disables test classes or test methods that are annotated with @Ignore.

import org.junit.Ignore;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.migrationsupport.EnableJUnit4MigrationSupport;

// @ExtendWith(IgnoreCondition.class)
@EnableJUnit4MigrationSupport
class IgnoredTestsDemo {

@Ignore
@Test
void testWillBeIgnored() {

}

@Test
void testWillBeExecuted() {

}

Failure Message Arguments

The Assumptions and Assertions classes in JUnit Jupiter declare arguments in a different order than
in JUnit 4. In JUnit 4 assertion and assumption methods accept the failure message as the first
argument; whereas, in JUnit Jupiter assertion and assumption methods accept the failure message
as the last argument.

For instance, the method assertEquals in JUnit 4 is declared as assertEquals(String message, Object

119


attachment$api//org.junit.jupiter.migrationsupport/org/junit/jupiter/migrationsupport/rules/EnableRuleMigrationSupport.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Disabled.html
attachment$api//org.junit.jupiter.migrationsupport/org/junit/jupiter/migrationsupport/EnableJUnit4MigrationSupport.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExecutionCondition.html

expected, Object actual), but in JUnit Jupiter it is declared as assertEquals(Object expected, Object
actual, String message). The rationale for this is that a failure message is optional, and optional
arguments should be declared after required arguments in a method signature.

The methods affected by this change are the following:

* Assertions
o assertlrue
o assertFalse
o assertNull
o assertNotNull
o assertEquals
o assertNotEquals
o assertArrayEquals
o assertSame
o assertNotSame
o assertThrows
* Assumptions
o assumeTrue

o assumeFalse

120



Running Tests

This section explains how to run tests from IDEs and build tools.

IDE Support

Intelli] IDEA

Intelli] IDEA supports running tests on the JUnit Platform since version 2016.2. For more
information, please consult this Intelli] IDEA resource. Note, however, that it is recommended to
use IDEA 2017.3 or newer since more recent versions of IDEA download the following JARs
automatically based on the API version used in the project: junit-platform-launcher, junit-jupiter-
engine, and junit-vintage-engine.

In order to use a different JUnit 5 version (e.g., 5.14.1), you may need to include the corresponding
versions of the junit-platform-launcher, junit-jupiter-engine, and junit-vintage-engine JARs in the
classpath.

Additional Gradle Dependencies

testImplementation(platform("org.junit:junit-bom:5.14.1"))
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
testRuntimeOnly("org.junit.jupiter:junit-jupiter-engine")
testRuntimeOnly("org.junit.vintage:junit-vintage-engine")

Additional Maven Dependencies

<l-- ... -->
<dependencies>
<dependency>

<groupId>org.junit.platform</groupld>
<artifactId>junit-platform-launcher</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupld>
<artifactId>junit-jupiter-engine</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.junit.vintage</groupld>
<artifactId>junit-vintage-engine</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.junit</groupld>

121


https://jb.gg/junit-idea/

<artifactId>junit-bom</artifactId>
<version>5.14.1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Eclipse

Eclipse IDE offers support for the JUnit Platform since the Eclipse Oxygen.l1a (4.7.1a) release.

For more information on using JUnit 5 in Eclipse consult the official Eclipse support for JUnit 5
section of the Eclipse Project Oxygen.la (4.7.1a) - New and Noteworthy documentation.

NetBeans

NetBeans offers support for JUnit Jupiter and the JUnit Platform since the Apache NetBeans 10.0
release.

For more information consult the JUnit 5 section of the Apache NetBeans 10.0 release notes.

Visual Studio Code

Visual Studio Code supports JUnit Jupiter and the JUnit Platform via the Java Test Runner extension
which is installed by default as part of the Java Extension Pack.

For more information consult the Testing section of the Java in Visual Studio Code documentation.

Other IDEs

If you are using an editor or IDE other than one of those listed in the previous sections, the JUnit
team provides two alternative solutions to assist you in using JUnit 5. You can use the Console
Launcher manually — for example, from the command line — or execute tests with a JUnit 4 based
Runner if your IDE has built-in support for JUnit 4.

Build Support

Gradle

Starting with version 4.6, Gradle provides native support for executing tests on the JUnit Platform.
To enable it, you need to specify useJUnitPlatform() within a test task declaration in build.gradle:

test {
useJUnitPlatform()

122


https://www.eclipse.org/eclipse/news/4.7.1a/#junit-5-support
https://netbeans.apache.org/download/nb100/nb100.html
https://netbeans.apache.org/download/nb100/nb100.html
https://netbeans.apache.org/download/nb100/index.html#_junit_5
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-test
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://code.visualstudio.com/docs/languages/java#_testing
https://docs.gradle.org/4.6/release-notes.html
https://docs.gradle.org/current/userguide/java_testing.html#using_junit5

Filtering by tags, tag expressions, or engines is also supported:

test {
useJUnitPlatform {
includeTags("fast", "smoke & feature-a")
// excludeTags("slow", "ci")
includeEngines("junit-jupiter")
// excludeEngines("junit-vintage")

Please refer to the official Gradle documentation for a comprehensive list of options.
Aligning dependency versions

(r') See Spring Boot for details on how to override the version of JUnit used in your
- Spring Boot application.

Unless you’re using Spring Boot which defines its own way of managing dependencies, it is
recommended to use the JUnit Platform Bill of Materials (BOM) to align the versions of all JUnit 5
artifacts.

Explicit platform dependency on the BOM

dependencies {
testImplementation(platform("org.junit:junit-bom:5.14.1"))
testImplementation("org.junit.jupiter:junit-jupiter")
testRuntimeOnly("org.junit.platform:junit-platform-Tlauncher")

Using the BOM allows you to omit the version when declaring dependencies on all artifacts with the
org.junit.platform, org.junit.jupiter, and org.junit.vintage group IDs.

Since all JUnit artifacts declare a platform dependency on the BOM, you usually don’t need to
declare an explicit dependency on it yourself. Instead, it’s sufficient to declare one regular
dependency that includes a version number. Gradle will then pull in the BOM automatically so you
can omit the version for all other JUnit 5 artifacts.

Implicit platform dependency on the BOM
dependencies {

testImplementation("org.junit.jupiter:junit-jupiter:5.14.1") @
testRuntimeOnly("org.junit.platform:junit-platform-launcher") @

@ Dependency declaration with explicit version. Pulls in the junit-bom automatically.

@ Dependency declaration without version. The version is supplied by the junit-bom.

123


https://docs.gradle.org/current/userguide/java_testing.html
https://docs.gradle.org/current/userguide/platforms.html

Declaring a dependency on junit-platform-launcher

Even though pre-8.0 versions of Gradle don’t require declaring an explicit
dependency on junit-platform-launcher, it is recommended to do so to ensure the
A versions of JUnit artifacts on the test runtime classpath are aligned.

Moreover, doing so is recommended and in some cases even required when
importing the project into an IDE like Eclipse or Intelli] IDEA.

Configuring Test Engines
In order to run any tests at all, a TestEngine implementation must be on the classpath.

To configure support for JUnit Jupiter based tests, configure a testImplementation dependency on
the dependency-aggregating JUnit Jupiter artifact similar to the following.

dependencies {
testImplementation("org.junit.jupiter:junit-jupiter:5.14.1")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")

Alternatively, you can use Gradle’s JVM Test Suite support.

Kotlin DSL

testing {
suites {
named<JvmTestSuite>("test")
useJUnitJupiter("5.14.1

{
)

Groovy DSL

testing {
suites {
test {
useJUnitJupiter("5.14.1")

The JUnit Platform can run JUnit 4 based tests as long as you configure a testImplementation
dependency on JUnit 4 and a testRuntimeOnly dependency on the JUnit Vintage TestEngine
implementation similar to the following.

dependencies {

124


https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html

testImplementation("junit:junit:4.13.2")
testRuntimeOnly("org.junit.vintage:junit-vintage-engine:5.14.1")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")

Configuration Parameters

The standard Gradle test task currently does not provide a dedicated DSL to set JUnit Platform
configuration parameters to influence test discovery and execution. However, you can provide
configuration parameters within the build script via system properties (as shown below) or via the
junit-platform.properties file.

test {
/...
systemProperty("junit.jupiter.conditions.deactivate", "*")
systemProperty("junit.jupiter.extensions.autodetection.enabled", true)
systemProperty("junit.jupiter.testinstance.lifecycle.default", "per_class")
/] ...

Configuring Logging (optional)

JUnit uses the Java Logging APIs in the java.util.logging package (a.k.a. JUL) to emit warnings and
debug information. Please refer to the official documentation of LogManager for configuration
options.

Alternatively, it’s possible to redirect log messages to other logging frameworks such as Log4j or
Logback. To use a logging framework that provides a custom implementation of LogManager, set the
java.util.logging.manager system property to the fully qualified class name of the LogManager
implementation to use. The example below demonstrates how to configure Log4j 2.x (see Log4j JDK
Logging Adapter for details).

test {
systemProperty("java.util.logging.manager",
"org.apache.logging.log4j.jul.LogManager")
// Avoid overhead (see
https://logging.apache.org/log4j/2.x/manual/jmx.html#enabling-jmx)
systemProperty("log4j2.disableJmx", "true")
}

Other logging frameworks provide different means to redirect messages logged using
java.util.logging. For example, for Logback you can use the JUL to SLF4] Bridge by adding it as a
dependency to the test runtime classpath.

Maven

Maven Surefire and Maven Failsafe provide native support for executing tests on the JUnit

125


https://docs.oracle.com/javase/8/docs/api/java/util/logging/LogManager.html
https://logging.apache.org/log4j/2.x/
https://logback.qos.ch/
https://docs.oracle.com/javase/8/docs/api/java/util/logging/LogManager.html
https://docs.oracle.com/javase/8/docs/api/java/util/logging/LogManager.html
https://logging.apache.org/log4j/2.x/log4j-jul/index.html
https://logging.apache.org/log4j/2.x/log4j-jul/index.html
https://logback.qos.ch/
https://www.slf4j.org/legacy.html#jul-to-slf4j
https://maven.apache.org/surefire/maven-surefire-plugin/examples/junit-platform.html

Platform. The pom.xml file in the junit-jupiter-starter-maven project demonstrates how to use the
Maven Surefire plugin and can serve as a starting point for configuring your Maven build.

Use recent version of Maven Surefire/Failsafe to avoid interoperability issues

To avoid interoperability issues, it is recommended to use a recent version of
Maven Surefire/Failsafe (3.0.0 or later) because it automatically aligns the version
of the JUnit Platform Launcher that is used with the JUnit Platform version found
on the test runtime classpath.

If you are using a version older than 3.0.0-M4, you can work around the missing
alignment by adding a test dependency on the matching version of the JUnit
A Platform Launcher to your Maven build as follows.

<dependency>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-launcher</artifactId>
<version>1.14.1</version>
<scope>test</scope>

</dependency>

Aligning dependency versions

Unless you’re using Spring Boot which defines its own way of managing dependencies, it is
recommended to use the JUnit Platform Bill of Materials (BOM) to align the versions of all JUnit 5
artifacts.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.junit</groupld>
<artifactId>junit-bom</artifactId>
<version>5.14.1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Using the BOM allows you to omit the version when declaring dependencies on all artifacts with the
org.junit.platform, org.junit.jupiter, and org.junit.vintage group IDs.

(r') See Spring Boot for details on how to override the version of JUnit used in your
- Spring Boot application.

Configuring Test Engines

In order to have Maven Surefire or Maven Failsafe run any tests at all, at least one TestEngine

126


https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-maven

implementation must be added to the test classpath.

To configure support for JUnit Jupiter based tests, configure test scoped dependencies on the JUnit
Jupiter API and the JUnit Jupiter TestEngine implementation similar to the following.

Qu=e o ==

<dependencies>
Q== oo ==B
<dependency>

<groupId>org.junit.jupiter</groupld>
<artifactId>junit-jupiter</artifactId>
<version>5.14.1</version> <!-- can be omitted when using the BOM -->
<scope>test</scope>
</dependency>
Qe nng o=
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.3</version>
</plugin>
<plugin>
<artifactId>maven-failsafe-plugin</artifactId>
<version>3.5.3</version>
</plugin>
</plugins>
</build>
== o0 ==

Maven Surefire and Maven Failsafe can run JUnit 4 based tests alongside Jupiter tests as long as you
configure test scoped dependencies on JUnit 4 and the JUnit Vintage TestEngine implementation
similar to the following.

Q== o, ==

<dependencies>
Qe nng o=
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.2</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.junit.vintage</groupld>
<artifactId>junit-vintage-engine</artifactId>
<version>5.14.1</version> <!-- can be omitted when using the BOM -->
<scope>test</scope>

</dependency>

127



QISR >
</dependencies>
Qo= o0 ==B
<build>
<plugins>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.3</version>
</plugin>
<plugin>
<artifactId>maven-failsafe-plugin</artifactId>
<version>3.5.3</version>

</plugin>
</plugins>
</build>
u=e L, ==

Filtering by Test Class Names

The Maven Surefire Plugin will scan for test classes whose fully qualified names match the
following patterns.

o **/Test*.java
o **/*Test.java
o **/*Tests.java

» **/*Test(Case.java
Moreover, it will exclude all nested classes (including static member classes) by default.

Note, however, that you can override this default behavior by configuring explicit include and
exclude rules in your pom.xml file. For example, to keep Maven Surefire from excluding static
member classes, you can override its exclude rules as follows.

Overriding exclude rules of Maven Surefire

Qlle= oo ==2
<build>
<plugins>
<plugin>

<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.3</version>
<configuration>
<excludes>
<exclude/>
</excludes>
</configuration>
</plugin>
</plugins>
</build>

128



<l-- .., ==

Please see the Inclusions and Exclusions of Tests documentation for Maven Surefire for details.
Filtering by Tags
You can filter tests by tags or tag expressions using the following configuration properties.

* to include tags or tag expressions, use groups.

* to exclude tags or tag expressions, use excludedGroups.

LU= g o
<build>
<plugins>
<plugin>

<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.3</version>
<configuration>
<groups>acceptance | !feature-a</groups>
<excludedGroups>integration, regression</excludedGroups>

</configuration>
</plugin>
</plugins>
</build>
Q== o, ==

Configuration Parameters

You can set JUnit Platform configuration parameters to influence test discovery and execution by
declaring the configurationParameters property and providing key-value pairs using the Java
Properties file syntax (as shown below) or via the junit-platform.properties file.

Sll=a D0 ==
<build>
<plugins>
<plugin>

<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.3</version>
<configuration>
<properties>
<configurationParameters>
junit.jupiter.conditions.deactivate = *
junit.jupiter.extensions.autodetection.enabled = true
junit.jupiter.testinstance.lifecycle.default = per_class
</configurationParameters>
</properties>
</configuration>
</plugin>

129


https://maven.apache.org/surefire/maven-surefire-plugin/examples/inclusion-exclusion.html

</plugins>
</build>
Sll=a D0 ==

Ant

Starting with version 1.10.3, Ant has a junitlauncher task that provides native support for
launching tests on the JUnit Platform. The junitlauncher task is solely responsible for launching the
JUnit Platform and passing it the selected collection of tests. The JUnit Platform then delegates to
registered test engines to discover and execute the tests.

The junitlauncher task attempts to align as closely as possible with native Ant constructs such as
resource collections for allowing users to select the tests that they want executed by test engines.
This gives the task a consistent and natural feel when compared to many other core Ant tasks.

Starting with version 1.10.6 of Ant, the junitlauncher task supports forking the tests in a separate
JVM.

The build.xml file in the junit-jupiter-starter-ant project demonstrates how to use the task and
can serve as a starting point.

Basic Usage

The following example demonstrates how to configure the junitlauncher task to select a single test
class (i.e., org.myapp.test.MyFirstJUnit5Test).

<path id="test.classpath">
<!-- The location where you have your compiled classes -->
<pathelement location="${build.classes.dir}" />

</path>
Sll=a =
<junitlauncher>

<classpath refid="test.classpath" />
<test name="org.myapp.test.MyFirstJUnit5Test" />
</junitlauncher>

The test element allows you to specify a single test class that you want to be selected and executed.
The classpath element allows you to specify the classpath to be used to launch the JUnit Platform.
This classpath will also be used to locate test classes that are part of the execution.

The following example demonstrates how to configure the junitlauncher task to select test classes
from multiple locations.

<path id="test.classpath">
<!-- The location where you have your compiled classes -->
<pathelement location="${build.classes.dir}" />

130


https://ant.apache.org/
https://ant.apache.org/manual/Tasks/junitlauncher.html
https://ant.apache.org/manual/Types/resources.html#collection
https://ant.apache.org/manual/Tasks/junitlauncher.html#fork
https://ant.apache.org/manual/Tasks/junitlauncher.html#fork
https://github.com/junit-team/junit-examples/tree/r5.14.1/junit-jupiter-starter-ant

</path>
all== L. =22
<junitlauncher>
<classpath refid="test.classpath" />
<testclasses outputdir="${output.dir}">
<fileset dir="${build.classes.dir}">
<include name="org/example/**/demo/**/" />
</fileset>
<fileset dir="${some.other.dir}">
<include name="org/myapp/**/" />
</fileset>
</testclasses>
</junitlauncher>

In the above example, the testclasses element allows you to select multiple test classes that reside
in different locations.

For further details on usage and configuration options please refer to the official Ant
documentation for the junitlauncher task.

Spring Boot

Spring Boot provides automatic support for managing the version of JUnit used in your project. In
addition, the spring-boot-starter-test artifact automatically includes testing libraries such as JUnit
Jupiter, Assert], MocKito, etc.

If your build relies on dependency management support from Spring Boot, you should not import
JUnit’s Bill of Materials (BOM) in your build script since that would result in duplicate (and
potentially conflicting) management of JUnit dependencies.

If you need to override the version of a dependency used in your Spring Boot application, you have
to override the exact name of the version property defined in the BOM used by the Spring Boot
plugin. For example, the name of the JUnit Jupiter version property in Spring Boot is junit-
jupiter.version. The mechanism for changing a dependency version is documented for both Gradle
and Maven.

With Gradle you can override the JUnit Jupiter version by including the following in your
build.gradle file.

ext['junit-jupiter.version'] = '5.14.1'

With Maven you can override the JUnit Jupiter version by including the following in your pom.xml
file.

<properties>
<junit-jupiter.version>5.14.1</junit-jupiter.version>
</properties>

131


https://ant.apache.org/manual/Tasks/junitlauncher.html
https://ant.apache.org/manual/Tasks/junitlauncher.html
https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#appendix.dependency-versions.properties
https://docs.spring.io/spring-boot/docs/current/gradle-plugin/reference/htmlsingle/#managing-dependencies.dependency-management-plugin.customizing
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/#using.parent-pom

Console Launcher

The Consolelauncher is a command-line Java application that lets you launch the JUnit Platform
from the console. For example, it can be used to run JUnit Vintage and JUnit Jupiter tests and print

test execution results to the console.

An executable Fat JAR (junit-platform-console-standalone-1.14.1.jar) that contains the contents of
all of its dependencies is published in the Maven Central repository under the junit-platform-

console-standalone directory. It contains the contents of the following artifacts:

* junit:junit:4.13.2

132

org.apiguardian:apiguardian-api:1.1.2

org.
org.

org.

org

org.
org.

org.

org

org.
org.
org.
org.
org.

org.

org

hamcrest:hamcrest-core:1.3

junit.

junit.

.junit.

junit.
junit.

junit.

.junit.

junit.
junit.
junit.
junit.

junit.

jupiter:junit-jupiter-api:5.14.1
jupiter:junit-jupiter-engine:5.14.1
jupiter:junit-jupiter-params:5.14.1
platform:junit-platform-commons:1.14.1
platform:junit-platform-console:1.14.1
platform:junit-platform-engine:1.14.1
platform:junit-platform-launcher:1.14.1
platform:junit-platform-reporting:1.14.1
platform:junit-platform-suite-api:1.14.1
platform:junit-platform-suite-commons:1.14.1
platform:junit-platform-suite-engine:1.14.1

vintage:junit-vintage-engine:5.14.1

opentest4j.reporting:open-test-reporting-tooling-spi:0.2.3

.opentest4j:opentest4j:1.3.0

Since the junit-platform-console-standalone JAR contains the contents of all of its
dependencies, its Maven POM does not declare any dependencies.

Furthermore, it is not very likely that you would need to include a dependency on
the junit-platform-console-standalone artifact in your project’s Maven POM or
Gradle build script. On the contrary, the executable junit-platform-console-
standalone JAR is typically invoked directly from the command line or a shell script
without a build script.

If you need to declare dependencies in your build script on some of the artifacts
contained in the junit-platform-console-standalone artifact, you should declare
dependencies only on the JUnit artifacts that are used in your project. To simplify
dependency management of JUnit artifacts in your build, you may wish to use the
junit-jupiter aggregator artifact or junit-bom. See Dependency Metadata for


attachment$api//org.junit.platform.console/org/junit/platform/console/ConsoleLauncher.html
https://central.sonatype.com/
https://repo1.maven.org/maven2/org/junit/platform/junit-platform-console-standalone
https://repo1.maven.org/maven2/org/junit/platform/junit-platform-console-standalone

details.

You can run the standalone ConsolelLauncher as shown below.

$ java -jar junit-platform-console-standalone-1.14.1.jar execute <OPTIONS>

— JUnit Vintage
|  L— example.JUnit4Tests
| L— standardJUnit4Test v
L— JUnit Jupiter
— StandardTests
| |— succeedingTest() v
|  L— skippedTest() 0 for demonstration purposes
L— A special test case
— Custom test name containing spaces v
F— 0°0°)0 v

L—g v

Test run finished after 64 ms
containers found
containers skipped
containers started
containers aborted
containers successful
containers failed
tests found

tests skipped
tests started
tests aborted
tests successful
tests failed

Sy}

L T s N e T s B s B s N s Y s IO s A s B s M |
S U1 SO U1l OO U1 e Ul
e e e e e e e e ed e e

You can also run the standalone ConsoleLauncher as shown below (for example, to include all jars in
a directory):

$ java -cp classes:testlib/* org.junit.platform.console.ConsoleLauncher <OPTIONS>

Exit Code

The Consolelauncher exits with a status code of 1 if any containers or tests failed. If

o no tests are discovered and the --fail-if-no-tests command-line option is
supplied, the Consolelauncher exits with a status code of 2. Otherwise, the exit code
is 0.

Subcommands and Options

The Consolelauncher provides the following subcommands:

133


https://docs.oracle.com/javase/tutorial/deployment/jar/run.html
attachment$api//org.junit.platform.console/org/junit/platform/console/ConsoleLauncher.html
attachment$api//org.junit.platform.console/org/junit/platform/console/ConsoleLauncher.html

Usage: junit [OPTIONS] [COMMAND]
Launches the JUnit Platform for test discovery and execution.
[6<filename>...] One or more argument files containing options.
-h, --help Display help information.
--version Display version information.
--disable-ansi-colors
Disable ANSI colors in output (not supported by all
terminals).
Commands:
discover Discover tests
execute Execute tests
engines List available test engines

For more information, please refer to the JUnit User Guide at
https://docs.junit.org/1.14.1/user-quide/

Discovering tests

Usage: junit discover [OPTIONS]
Discover tests
[@<filename>...] One or more argument files containing options.
--disable-ansi-colors Disable ANSI colors in output (not supported by all
terminals).

--disable-banner Disable print out of the welcome message.
-h, --help Display help information.
--version Display version information.
SELECTORS

--scan-classpath, --scan-class-path[=PATH]
Scan all directories on the classpath or explicit

classpath

roots. Without arguments, only directories on the
system

classpath as well as additional classpath entries
supplied via

-cp (directories and JAR files) are scanned. Explicit

classpath
roots that are not on the classpath will be silently
ignored.
This option can be repeated.
--scan-modules Scan all resolved modules for test discovery.
-u, --select-uri=URI... Select a URI for test discovery. This option can be
repeated.
-f, --select-file=FILE... Select a file for test discovery. The line and column

numbers can
be provided as URI query parameters (e.g. foo.txt?
line=12&column=34). This option can be repeated.
-d, --select-directory=DIR...

134



Select a directory for test discovery. This option can be
repeated.
-0, --select-module=NAME...
Select single module for test discovery. This option can

be
repeated.
-p, --select-package=PKG...
Select a package for test discovery. This option can be
repeated.
-c, --select-class=CLASS...
Select a class for test discovery. This option can be
repeated.
-m, --select-method=NAME...
Select a method for test discovery. This option can be
repeated.
-r, --select-resource=RESOURCE...
Select a classpath resource for test discovery. This
option can
be repeated.
-i, --select-iteration=PREFIX:VALUE[INDEX(..INDEX)?(,INDEX(..INDEX)?)*]...
Select iterations for test discovery via a prefixed
identifier

and a list of indexes or index ranges (e.g.
method:com.acme.
Foo#tm()[1..2] selects the first and second iteration of
the m()
method in the com.acme.Foo class). This option can be
repeated.
--uid, --select-unique-id=UNIQUE-ID...
Select a unique id for test discovery. This option can be
repeated.
--select=PREFIX:VALUE...
Select via a prefixed identifier (e.g.
method:com.acme.Foo#m
selects the m() method in the com.acme.Foo class). This
option
can be repeated.

For more information on selectors including syntax examples, see
https://docs.junit.org/1.14.1/user-quide/#running-tests-discovery-selectors

FILTERS

-n, --include-classname=PATTERN
Provide a regular expression to include only classes

whose fully

qualified names match. To avoid loading classes
unnecessarily,

the default pattern only includes class names that
begin with

"Test" or end with "Test" or "Tests". When this option

135



is
repeated, all patterns will be combined using OR
semantics.
Default: A(Test.*|.+[.$]Test.*|.*Tests?)$
-N, --exclude-classname=PATTERN
Provide a regular expression to exclude those classes
whose fully
qualified names match. When this option is repeated,
all
patterns will be combined using OR semantics.
--include-package=PKG Provide a package to be included in the test run. This
option can
be repeated.
--exclude-package=PKG Provide a package to be excluded from the test run. This
option
can be repeated.
--include-methodname=PATTERN
Provide a reqgular expression to include only methods
whose fully
qualified names without parameters match. When this
option 1is
repeated, all patterns will be combined using OR
semantics.
--exclude-methodname=PATTERN
Provide a regular expression to exclude those methods
whose fully
qualified names without parameters match. When this

option is
repeated, all patterns will be combined using OR
semantics.
-t, --include-tag=TAG Provide a tag or tag expression to include only tests
whose tags
match. When this option is repeated, all patterns will
be
combined using OR semantics.
-T, --exclude-tag=TAG Provide a tag or tag expression to exclude those tests
whose tags
match. When this option is repeated, all patterns will
be

combined using OR semantics.
-e, --include-engine=ID Provide the ID of an engine to be included in the test
run. This
option can be repeated.
-E, --exclude-engine=ID Provide the ID of an engine to be excluded from the test
run.
This option can be repeated.

RUNTIME CONFIGURATION

-cp, --classpath, --class-path=PATH
Provide additional classpath entries -- for example, for

136



adding

repeated.

engines and their dependencies. This option can be

--config-resource=PATH Set confiquration parameters for test discovery and

execution via
--config=KEY=VALUE

execution.

CONSOLE OuTPUT

--color-palette=FILE
style of

--single-color
(not

--details=MODE
executed. Use

If "none'
are shown.

--details-theme=THEME
executed.

on

a classpath resource. This option can be repeated.
Set a configuration parameter for test discovery and

This option can be repeated.

Specify a path to a properties file to customize ANSI

output (not supported by all terminals).
Style test output using only text attributes, no color

supported by all terminals).
Select an output details mode for when tests are

one of: none, summary, flat, tree, verbose, testfeed.
is selected, then only the summary and test failures

Default: tree.
Select an output details tree theme for when tests are

Use one of: ascii, unicode. Default is detected based

default character encoding.

--redirect-stdout=FILE Redirect test output to stdout to a file.
--redirect-stderr=FILE Redirect test output to stderr to a file.

For more information, please refer to the JUnit User Guide at
https://docs.junit.org/1.14.1/user-quide/

Executing tests

Usage: junit execute [OPTIONS]

Execute tests
[@<filename>...]
--disable-ansi-colors

terminals).
--disable-banner

-h, --help
--version

SELECTORS

One or more argument files containing options.
Disable ANSI colors in output (not supported by all

Disable print out of the welcome message.
Display help information.
Display version information.

--scan-classpath, --scan-class-path[=PATH]

137



classpath
system
supplied via
classpath
ignored.
--scan-modules

-u, --select-uri=URI...

repeated.

-f, --select-file=FILE...
numbers can

-d, --select-directory=DIR..

-0, --select-module=NAME...
be
-p, --select-package=PKG...

repeated.
-c, --select-class=CLASS...

repeated.
-m, --select-method=NAME...

repeated.

Scan all directories on the classpath or explicit
roots. Without arguments, only directories on the
classpath as well as additional classpath entries
-cp (directories and JAR files) are scanned. Explicit
roots that are not on the classpath will be silently
This option can be repeated.

Scan all resolved modules for test discovery.

Select a URI for test discovery. This option can be

Select a file for test discovery. The line and column

be provided as URI query parameters (e.g. foo.txt?
line=12&column=34). This option can be repeated.

Select a directory for test discovery. This option can be
repeated.

Select single module for test discovery. This option can
repeated.

Select a package for test discovery. This option can be
Select a class for test discovery. This option can be

Select a method for test discovery. This option can be

-r, --select-resource=RESOURCE...

option can

Select a classpath resource for test discovery. This

be repeated.

-1, --select-iteration=PREFIX:VALUE[INDEX(..INDEX)?(,INDEX(..INDEX)?)*]...

identifier
method:com.acme.
the m()

repeated.

--uid, --select-unique-

--select=PREFIX:VALUE..

138

Select iterations for test discovery via a prefixed
and a list of indexes or index ranges (e.g.
Foo#tm()[1..2] selects the first and second iteration of
method in the com.acme.Foo class). This option can be
1d=UNIQUE-ID...

Select a unique id for test discovery. This option can be
repeated.



Select via a prefixed identifier (e.g.
method:com.acme.Foo#m
selects the m() method in the com.acme.Foo class). This
option
can be repeated.

For more information on selectors including syntax examples, see
https://docs.junit.org/1.14.1/user-quide/#running-tests-discovery-selectors

FILTERS

-n, --include-classname=PATTERN
Provide a reqgular expression to include only classes
whose fully
qualified names match. To avoid loading classes

unnecessarily,

the default pattern only includes class names that
begin with

"Test" or end with "Test" or "Tests". When this option
is

repeated, all patterns will be combined using OR
semantics.

Default: A(Test.*|.+[.$]1Test.*|.*Tests?)$
-N, --exclude-classname=PATTERN
Provide a regular expression to exclude those classes
whose fully
qualified names match. When this option is repeated,
all
patterns will be combined using OR semantics.
--include-package=PKG Provide a package to be included in the test run. This
option can
be repeated.
--exclude-package=PKG Provide a package to be excluded from the test run. This
option
can be repeated.
--include-methodname=PATTERN
Provide a reqgular expression to include only methods
whose fully
qualified names without parameters match. When this
option 1is
repeated, all patterns will be combined using OR
semantics.
--exclude-methodname=PATTERN
Provide a regular expression to exclude those methods
whose fully
qualified names without parameters match. When this

option 1is
repeated, all patterns will be combined using OR
semantics.
-t, --include-tag=TAG Provide a tag or tag expression to include only tests
whose tags

139



be

-T, --exclude-tag=TAG
whose tags

be

-e, --include-engine=ID
run. This

-E, --exclude-engine=ID
run.

RUNTIME CONFIGURATION

match. When this option is repeated, all patterns will

combined using OR semantics.
Provide a tag or tag expression to exclude those tests

match. When this option is repeated, all patterns will

combined using OR semantics.
Provide the ID of an engine to be included in the test

option can be repeated.
Provide the ID of an engine to be excluded from the test

This option can be repeated.

-cp, --classpath, --class-path=PATH

adding

repeated.

Provide additional classpath entries -- for example, for

engines and their dependencies. This option can be

--config-resource=PATH Set confiquration parameters for test discovery and

execution via
--config=KEY=VALUE

execution.

CONSOLE OuTPUT

--color-palette=FILE
style of

--single-color
(not

--details=MODE
executed. Use

If "none'

are shown.

a classpath resource. This option can be repeated.
Set a configuration parameter for test discovery and

This option can be repeated.

Specify a path to a properties file to customize ANSI

output (not supported by all terminals).
Style test output using only text attributes, no color

supported by all terminals).
Select an output details mode for when tests are

one of: none, summary, flat, tree, verbose, testfeed.
is selected, then only the summary and test failures

Default: tree.

--details-theme=THEME Select an output details tree theme for when tests are

executed.

on

Use one of: ascii, unicode. Default is detected based

default character encoding.

--redirect-stdout=FILE Redirect test output to stdout to a file.
--redirect-stderr=FILE Redirect test output to stderr to a file.

140



REPORTING

--fail-if-no-tests Fail and return exit status code 2 if no tests are found.
--reports-dir=DIR Enable report output into a specified local directory
(will be
created if it does not exist).

For more information, please refer to the JUnit User Guide at
https://docs.junit.org/1.14.1/user-quide/

Listing test engines

Usage: junit engines [OPTIONS]
List available test engines
[6<filename>...] One or more argument files containing options.
--disable-ansi-colors
Disable ANSI colors in output (not supported by all

terminals).
--disable-banner  Disable print out of the welcome message.
-h, --help Display help information.
--version Display version information.

For more information, please refer to the JUnit User Guide at
https://docs.junit.org/1.14.1/user-qguide/

Argument Files (@-files)

On some platforms you may run into system limitations on the length of a command line when
creating a command line with lots of options or with long arguments.

Since version 1.3, the ConsolelLauncher supports argument files, also known as @-files. Argument files
are files that themselves contain arguments to be passed to the command. When the underlying
picocli command line parser encounters an argument beginning with the character @, it expands
the contents of that file into the argument list.

The arguments within a file can be separated by spaces or newlines. If an argument contains
embedded whitespace, the whole argument should be wrapped in double or single quotes — for
example, "-f=My Files/Stuff.java".

If the argument file does not exist or cannot be read, the argument will be treated literally and will
not be removed. This will likely result in an "unmatched argument” error message. You can
troubleshoot such errors by executing the command with the picocli.trace system property set to
DEBUG.

Multiple @-files may be specified on the command line. The specified path may be relative to the
current directory or absolute.

You can pass a real parameter with an initial @ character by escaping it with an additional @ symbol.

141


https://github.com/remkop/picocli

For example, p@somearg will become @somearg and will not be subject to expansion.

Redirecting Standard Output/Error to Files
You can redirect the System.out (stdout) and System.err (stderr) output streams to files using the

--redirect-stdout and --redirect-stderr options:

$ java -jar junit-platform-console-standalone-1.14.7.jar <OPTIONS> \
--redirect-stdout=stdout.txt \
--redirect-stderr=stderr.txt

If the --redirect-stdout and --redirect-stderr arguments point to the same file,

o both output streams will be redirected to that file.

The default charset is used for writing to the files.

Color Customization

The colors used in the output of the ConsolelLauncher can be customized. The option --single-color
will apply a built-in monochrome style, while --color-palette will accept a properties file to
override the ANSI SGR color styling. The properties file below demonstrates the default style:

SUCCESSFUL = 32

ABORTED = 33
FAILED = 31
SKIPPED = 35
CONTAINER = 35
TEST = 34
DYNAMIC = 35

REPORTED = 37

Using JUnit 4 to run the JUnit Platform

The JUnitPlatform runner has been deprecated

The JUnitPlatform runner was developed by the JUnit team as an interim solution
for running test suites and tests on the JUnit Platform in a JUnit 4 environment.

In recent years, all mainstream build tools and IDEs provide built-in support for
running tests directly on the JUnit Platform.

In addition, the introduction of @Suite support provided by the junit-platform-
suite-engine module makes the JUnitPlatform runner obsolete. See JUnit Platform
Suite Engine for details.

The JUnitPlatform runner and @UseTechnicalNames annotation have therefore been
deprecated in JUnit Platform 1.8 and will be removed in JUnit Platform 2.0.

142


attachment$api//org.junit.platform.console/org/junit/platform/console/ConsoleLauncher.html
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors

If you are using the JUnitPlatform runner, please migrate to the @Suite support.

The JUnitPlatform runner is a JUnit 4 based Runner which enables you to run any test whose
programming model is supported on the JUnit Platform in a JUnit 4 environment — for example, a
JUnit Jupiter test class.

Annotating a class with @RunWith(JUnitPlatform.class) allows it to be run with IDEs and build
systems that support JUnit 4 but do not yet support the JUnit Platform directly.

Since the JUnit Platform has features that JUnit 4 does not have, the runner is only
o able to support a subset of the JUnit Platform functionality, especially with regard
to reporting (see Display Names vs. Technical Names).

Setup

You need the following artifacts and their dependencies on the classpath. See Dependency Metadata
for details regarding group IDs, artifact IDs, and versions.

Explicit Dependencies

* junit-platform-runner in test scope: location of the JUnitPlatform runner

* junit-4.13.2.jar in test scope: to run tests using JUnit 4

* junit-jupiter-api in test scope: API for writing tests using JUnit Jupiter, including @Test, etc.

* junit-jupiter-engine in test runtime scope: implementation of the TestEngine API for JUnit

Jupiter

Transitive Dependencies
* junit-platform-suite-api in test scope
* junit-platform-suite-commons in test scope
* junit-platform-launcher in test scope

* junit-platform-engine in test scope

junit-platform-commons in test scope

opentest4j in test scope

Display Names vs. Technical Names

To define a custom display name for the class run via @RunWith(JUnitPlatform.class) annotate the
class with @SuiteDisplayName and provide a custom value.

By default, display names will be used for test artifacts; however, when the JUnitPlatform runner is
used to execute tests with a build tool such as Gradle or Maven, the generated test report often
needs to include the technical names of test artifacts — for example, fully qualified class names —
instead of shorter display names like the simple name of a test class or a custom display name
containing special characters. To enable technical names for reporting purposes, declare the
@UseTechnicalNames annotation alongside @RunWith(JUnitPlatform.class).

143



Note that the presence of @UseTechnicalNames overrides any custom display name configured via
@SuiteDisplayName.

Single Test Class

One way to wuse the IJUnitPlatform runner 1is to annotate a test class with
@RunWith(JUnitPlatform.class) directly. Please note that the test methods in the following example
are annotated with org.junit.jupiter.api.Test (JUnit Jupiter), not org.junit.Test (JUnit 4).
Moreover, in this case the test class must be public; otherwise, some IDEs and build tools might not
recognize it as a JUnit 4 test class.

import static org.junit.jupiter.api.Assertions.fail;

import org.junit.jupiter.api.Test;
import org.junit.runner.RunWith;

@RunWith(org.junit.platform.runner.JUnitPlatform.class)
public class JUnitPlatformClassDemo {

@Test
void succeedingTest() {
/* no-op */

}

@Test
void failingTest() {

fail("Failing for failing's sake.");
}

Test Suite

If you have multiple test classes you can create a test suite as can be seen in the following example.

import org.junit.platform.suite.api.SelectPackages;
import org.junit.platform.suite.api.SuiteDisplayName;
import org.junit.runner.RunWith;

@RunWith(org.junit.platform.runner.JUnitPlatform.class)
@SuiteDisplayName("JUnit Platform Suite Demo")
@SelectPackages("example")

public class JUnitPlatformSuiteDemo {

}

The JUnitPlatformSuiteDemo will discover and run all tests in the example package and its
subpackages. By default, it will only include test classes whose names either begin with Test or end
with Test or Tests.

144



Additional Configuration Options

package for further details.

There are more configuration options for discovering and filtering tests than just
@SelectPackages. Please consult the Javadoc of the org.junit.platform.suite.api

Test classes and suites annotated with @RunWith(JUnitPlatform.class) cannot be

A

infrastructure.

Discovery Selectors

executed directly on the JUnit Platform (or as a "JUnit 5" test as documented in
some IDEs). Such classes and suites can only be executed using JUnit 4

The JUnit Platform provides a rich set of discovery selectors that can be used to specify which tests

should be discovered or executed.

Discovery selectors can be created programmatically using the factory methods in the
DiscoverySelectors class, specified declaratively via annotations when using the JUnit Platform
Suite Engine, via options of the Console Launcher, or generically as strings via their identifiers.

The following discovery selectors are provided out of the box:

Java Type API
ClasspathResourceS select(lasspathRes
elector ource
(lasspathRootSelec select(lasspathRoo
tor ts

(lassSelector select(Class

DirectorySelector selectDirectory

FileSelector selectFile
IterationSelector selectIteration
MethodSelector selectMethod
ModuleSelector selectModule

NestedClassSelecto selectNestedClass
;

NestedMethodSelect selectNestedMethod
or

Annotation

@Select(ClasspathRe
source

@SelectClasses

@SelectDirectories

@SelectFile

@Select("<identifi
er>")

@SelectMethod

@SelectModules

@Select("<identifi
er>")

@Select("<identifi
er>")

Console
Launcher

--select-resource
/foo.csv

--scan-classpath
bin
--select-class
com.acme.Foo

--select-directory
foo/bar

--select-file
dir/foo.txt

--select-iteration
method=com.acme.Fo
o#fm[1..2]

--select-method
com.acme. Foottm

--select-module
com.acme

--select
<identifier>

--select
<identifier>

Identifier

resource:/foo.csv

classpath-root:bin

class:com.acme.Foo

directory:foo/bar

file:dir/foo.txt

iteration:method:c
om.acme.Foo#m[1..2

]

method:com.acme.Fo
offm

module:com.acme

nested-
class:com.acme.Foo
/Bar

nested-
method:com.acme.Fo
o/Bar#m

145


attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/package-summary.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/ClasspathResourceSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/ClasspathResourceSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectClasspathResource(java.lang.String)
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectClasspathResource(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectClasspathResource.html
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectClasspathResource.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/ClasspathRootSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/ClasspathRootSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectClasspathRoots(java.util.Set)
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectClasspathRoots(java.util.Set)
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/ClassSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectClass(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectClasses.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DirectorySelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectDirectory(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectDirectories.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/FileSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectFile(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectFile.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/IterationSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectIteration(org.junit.platform.engine.DiscoverySelector,int...)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/Select.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/MethodSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectMethod(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectMethod.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/ModuleSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectModule(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectModules.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/NestedClassSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/NestedClassSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectNestedClass(java.util.List,java.lang.Class)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/Select.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/NestedMethodSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/NestedMethodSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectNestedMethod(java.util.List,java.lang.Class,java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/Select.html

Java Type API Annotation Console Identifier

Launcher
PackageSelector selectPackage @SelectPackages --select-package  package:com.acme.f
com.acme.foo 00
UniqueldSelector selectUniqueld @Select("<identifi --select-unique-id uid:[engine:Foo]/[
er>") <identifier> segment:Bar]
UriSelector selectUri @SelectUris --select-uri uri:file:///foo.tx

file:///foo.txt t

Configuration Parameters

In

addition to instructing the platform which test classes and test engines to include, which

packages to scan, etc., it is sometimes necessary to provide additional custom configuration
parameters that are specific to a particular test engine, listener, or registered extension. For
example, the JUnit Jupiter TestEngine supports configuration parameters for the following use cases.

Changing the Default Test Instance Lifecycle
Enabling Automatic Extension Detection
Deactivating Conditions

Setting the Default Display Name Generator

Configuration Parameters are text-based key-value pairs that can be supplied to test engines
running on the JUnit Platform via one of the following mechanisms.

1.

3.
4.

146

The configurationParameter() and configurationParameters() methods in
LauncherDiscoveryRequestBuilder which is used to build a request supplied to the Launcher API.
When running tests via one of the tools provided by the JUnit Platform you can specify
configuration parameters as follows:

o Console Launcher: use the --config command-line option.
o Gradle: use the systemProperty or systemProperties DSL.
o Maven Surefire provider: use the configurationParameters property.

The configurationParametersResources() method in LauncherDiscoveryRequestBuilder.
When running tests via the Console Launcher you can specify custom configuration files using
the --config-resource command-line option.

JVM system properties.

The JUnit Platform default configuration file: a file named junit-platform.properties in the root
of the class path that follows the syntax rules for Java Properties files.

Configuration parameters are looked up in the exact order defined above.
Consequently, configuration parameters supplied directly to the Launcher take

o precedence over those supplied via custom configuration files, system properties,
and the default configuration file. Similarly, configuration parameters supplied via
system properties take precedence over those supplied via the default
configuration file.


attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/PackageSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectPackage(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectPackages.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/UniqueIdSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectUniqueId(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/Select.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/UriSelector.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/discovery/DiscoverySelectors.html#selectUri(java.lang.String)
attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/SelectUris.html

Pattern Matching Syntax

This section describes the pattern matching syntax that is applied to the configuration parameters
used for the following features.

* Deactivating Conditions

» Deactivating a TestExecutionListener

Stack Trace Pruning

Filtering Auto-detected Extensions

If the value for the given configuration parameter consists solely of an asterisk (*), the pattern will
match against all candidate classes. Otherwise, the value will be treated as a comma-separated list
of patterns where each pattern will be matched against the fully qualified class name (FQCN) of
each candidate class. Any dot (.) in a pattern will match against a dot (.) or a dollar sign (§) in a
FQCN. Any asterisk (*) will match against one or more characters in a FQCN. All other characters in
a pattern will be matched one-to-one against a FQCN.

Examples:

« *: matches all candidate classes.

* org.junit.*: matches all candidate classes under the org.junit base package and any of its
subpackages.

» * MyCustomImpl: matches every candidate class whose simple class name is exactly MyCustomImpl.
» *System*: matches every candidate class whose FQCN contains System.
* *System*, *Unit*: matches every candidate class whose FQCN contains System or Unit.

» org.example.MyCustomImpl: matches the candidate class whose FQCN is exactly
org.example.MyCustomImpl.

e org.example.MyCustomImpl, org.example.TheirCustomImpl: matches candidate classes whose FQCN
is exactly org.example.MyCustomImpl or org.example.TheirCustomImpl.

Tags

Tags are a JUnit Platform concept for marking and filtering tests. The programming model for
adding tags to containers and tests is defined by the testing framework. For example, in JUnit
Jupiter based tests, the @Tag annotation (see Tagging and Filtering) should be used. For JUnit 4 based
tests, the Vintage engine maps @Category annotations to tags (see Categories Support). Other testing
frameworks may define their own annotation or other means for users to specify tags.

Syntax Rules for Tags
Regardless how a tag is specified, the JUnit Platform enforces the following rules:

* A tag must not be null or blank.
* A trimmed tag must not contain whitespace.

* A trimmed tag must not contain ISO control characters.

147



* A trimmed tag must not contain any of the following reserved characters.
o ,:comma
o (: left parenthesis
o ): right parenthesis
o & ampersand
o |: vertical bar

o 1: exclamation point

o In the above context, "trimmed" means that leading and trailing whitespace
characters have been removed.
Tag Expressions

Tag expressions are boolean expressions with the operators !, & and |. In addition, ( and ) can be
used to adjust for operator precedence.

Two special expressions are supported, any() and none(), which select all tests with any tags at all,
and all tests without any tags, respectively. These special expressions may be combined with other
expressions just like normal tags.

Operators (in descending order of precedence)

Operator Meaning Associativity
! not right

& and left

| or left

If you are tagging your tests across multiple dimensions, tag expressions help you to select which
tests to execute. When tagging by test type (e.g., micro, integration, end-to-end) and feature (e.g.,
product, catalog, shipping), the following tag expressions can be useful.

Tag Expression Selection

product all tests for product

catalog | shipping all tests for catalog plus all tests for shipping
<code>catalog & shipping</code> all tests for the intersection between catalog and shipping

<code>product & !end-to-end</code>  all tests for product, but not the end-to-end tests

<code>(micro | integration) & all micro or integration tests for product or shipping
(product | shipping)</code>

Capturing Standard Output/Error

Since version 1.3, the JUnit Platform provides opt-in support for capturing output printed to
System.out and System.err. To enable it, set the junit.platform.output.capture.stdout and/or

148



junit.platform.output.capture.stderr configuration parameter to true. In addition, you may
configure the maximum number of buffered bytes to be used per executed test or container using
junit.platform.output.capture.maxBuffer.

If enabled, the JUnit Platform captures the corresponding output and publishes it as a report entry
using the stdout or stderr keys to all registered TestExecutionListener instances immediately before
reporting the test or container as finished.

Please note that the captured output will only contain output emitted by the thread that was used to
execute a container or test. Any output by other threads will be omitted because particularly when
executing tests in parallel it would be impossible to attribute it to a specific test or container.

Using Listeners and Interceptors

The JUnit Platform provides the following listener APIs that allow JUnit, third parties, and custom
user code to react to events fired at various points during the discovery and execution of a TestP1lan.

* LauncherSessionListener: receives events when a LauncherSession is opened and closed.

LauncherInterceptor: intercepts test discovery and execution in the context of a LauncherSession.
* LauncherDiscoverylListener: receives events that occur during test discovery.
» TestExecutionlistener: receives events that occur during test execution.

The LauncherSessionListener API is typically implemented by build tools or IDEs and registered
automatically for you in order to support some feature of the build tool or IDE.

The LauncherDiscoverylListener and TestExecutionlListener APIs are often implemented in order to
produce some form of report or to display a graphical representation of the test plan in an IDE.
Such listeners may be implemented and automatically registered by a build tool or IDE, or they may
be included in a third-party library — potentially registered for you automatically. You can also
implement and register your own listeners.

For details on registering and configuring listeners, see the following sections of this guide.

* Registering a LauncherSessionListener

* Registering a LauncherInterceptor

* Registering a LauncherDiscoveryListener
* Registering a TestExecutionListener

* Configuring a TestExecutionListener

» Deactivating a TestExecutionListener
The JUnit Platform provides the following listeners which you may wish to use with your test suite.

JUnit Platform Reporting

LegacyXmlReportGeneratinglistener can be used via the Console Launcher or registered manually
to generate XML reports compatible with the de facto standard for JUnit 4 based test reports.

149


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherSessionListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherSession.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherInterceptor.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherDiscoveryListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
attachment$api//org.junit.platform.reporting/org/junit/platform/reporting/legacy/xml/LegacyXmlReportGeneratingListener.html

OpenTestReportGeneratinglistener generates an XML report in the event-based format specified
by Open Test Reporting. It is auto-registered and can be enabled and configured via
Configuration Parameters.

See JUnit Platform Reporting for details.

Flight Recorder Support

FlightRecordingExecutionListener and FlightRecordingDiscoverylListener that generate Java
Flight Recorder events during test discovery and execution.

LoggingListener

TestExecutionListener for logging informational messages for all events via a BiConsumer that
consumes Throwable and Supplier<String>.

SummaryGeneratingListener

TestExecutionListener that generates a summary of the test execution which can be printed via a
PrintWriter.

UniqueldTrackinglListener

TestExecutionListener that that tracks the unique IDs of all tests that were skipped or executed
during the execution of the TestPlan and generates a file containing the unique IDs once
execution of the TestPlan has finished.

Flight Recorder Support

Since version 1.7, the JUnit Platform provides opt-in support for generating Flight Recorder events.
JEP 328 describes the Java Flight Recorder (JFR) as:

Flight Recorder records events originating from applications, the JVM, and
the OS. Events are stored in a single file that can be attached to bug reports
and examined by support engineers, allowing after-the-fact analysis of
issues in the period leading up to a problem.

In order to record Flight Recorder events generated while running tests, you need to:

1. Ensure that you are using either Java 8 Update 262 or higher or Java 11 or later.

2. Provide the org.junit.platform.jfr module (junit-platform-jfr-1.14.1.jar) on the class-path or
module-path at test runtime.

3. Start flight recording when launching a test suite. Flight Recorder can be started via java
command line option:
-XX:StartFlightRecording:filename-=...
Please consult the manual of your build tool for the appropriate commands.

To analyze the recorded events, use the jfr command line tool shipped with recent JDKs or open the

150


attachment$api//org.junit.platform.reporting/org/junit/platform/reporting/open/xml/OpenTestReportGeneratingListener.html
https://github.com/ota4j-team/open-test-reporting
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/listeners/LoggingListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/listeners/SummaryGeneratingListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/listeners/UniqueIdTrackingListener.html
https://openjdk.java.net/jeps/328
https://docs.oracle.com/en/java/javase/14/docs/specs/man/jfr.html

recording file with JDK Mission Control.

Flight Recorder support is currently an experimental feature. You'’re invited to give
A it a try and provide feedback to the JUnit team so they can improve and eventually
promote this feature.

Stack Trace Pruning

Since version 1.10, the JUnit Platform provides built-in support for pruning stack traces produced
by failing tests. This feature is enabled by default but can be disabled by setting the
junit.platform.stacktrace.pruning.enabled configuration parameter to false.

When enabled, all calls from the org.junit, jdk.internal.reflect, and sun.reflect packages are
removed from the stack trace, unless the calls occur after the test itself or any of its ancestors. For
that reason, calls to org.junit.jupiter.api.Assertions or org.junit.jupiter.api.Assumptions will
never be excluded.

In addition, all elements prior to and including the first call from the JUnit Platform Launcher will be
removed.

Discovery Issues

Test engines may encounter issues during test discovery. For example, the declaration of a test class
or method may be invalid. To avoid such issues from going unnoticed, the JUnit Platform provides a
mechanism for test engines to report them with different severity levels:

INFO

Indicates that the engine encountered something that could be potentially problematic, but
could also happen due to a valid setup or configuration.

WARNING

Indicates that the engine encountered something that is problematic and might lead to
unexpected behavior or will be removed or changed in a future release.

ERROR

Indicates that the engine encountered something that is definitely problematic and will lead to
unexpected behavior.

If an engine reports an issue with a severity equal to or higher than a configurable critical severity,
its tests will not be executed. Instead, the engine will be reported as failed during execution with a
DiscoveryIssueException listing all critical issues. Non-critical issues will be logged but will not
prevent the engine from executing its tests. The junit.platform.discovery.issue.severity.critical
configuration parameter can be used to set the critical severity level. Currently, the default value is
ERROR but it may be changed in a future release.

@ To surface all discovery issues in your project, it is recommended to set the

\/ junit.platform.discovery.issue.severity.critical configuration parameter to

151


https://jdk.java.net/jmc/
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Assumptions.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/DiscoveryIssueException.html

INFO.
In addition, registered LauncherDiscoverylListener implementations can receive discovery issues via

the issueEncountered() method. This allows IDEs and build tools to report issues to the user in a
more user-friendly way. For example, IDEs may choose to display all issues in a list or table.

152


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherDiscoveryListener.html

Extension Model

In contrast to the competing Runner, TestRule, and MethodRule extension points in JUnit 4, the JUnit
Jupiter extension model consists of a single, coherent concept: the Extension API. Note, however,
that Extension itself is just a marker interface.

Registering Extensions

Extensions can be registered declaratively via @ExtendWith, programmatically via
@RegisterExtension, or automatically via Java’s Serviceloader mechanism.

Declarative Extension Registration

Developers can register one or more extensions declaratively by annotating a test interface, test
class, test method, or custom composed annotation with @ExtendWith(:--) and supplying class
references for the extensions to register. As of JUnit Jupiter 5.8, @ExtendWith may also be declared on
fields or on parameters in test class constructors, in test methods, and in @EBeforeAll, @AfterAll,
@BeforeEach, and @AfterEach lifecycle methods.

For example, to register a WebServerExtension for a particular test method, you would annotate the
test method as follows. We assume the WebServerExtension starts a local web server and injects the
server’s URL into parameters annotated with @WebServerUrl.

@Test

@ExtendWith(WebServerExtension.class)

void getProductlList(@WebServerUrl String serverUrl) {
WebClient webClient = new WebClient();
// Use WebClient to connect to web server using serverUrl and verify response
assertEquals(200, webClient.get(serverUrl + "/products").getResponseStatus());

To register the WebServerExtension for all tests in a particular class and its subclasses, you would
annotate the test class as follows.

@ExtendWith(WebServerExtension.class)
class MyTests {

/] ...
}

Multiple extensions can be registered together like this:

@ExtendWith({ DatabaseExtension.class, WebServerExtension.class })
class MyFirstTests {

/] ...
}

153


writing-tests/annotations.pdf#annotations

As an alternative, multiple extensions can be registered separately like this:

@ExtendWith(DatabaseExtension.class)
@ExtendWith(WebServerExtension.class)
class MySecondTests {

/] ...
}
Extension Registration Order
Extensions registered declaratively via @ExtendWith at the class level, method level,
@ or parameter level will be executed in the order in which they are declared in the
- source code. For example, the execution of tests in both MyFirstTests and

MySecondTests will be extended by the DatabaseExtension and WebServerExtension, in
exactly that order.

If you wish to combine multiple extensions in a reusable way, you can define a custom composed
annotation and use @ExtendWith as a meta-annotation as in the following code listing. Then

@DatabaseAndWebServerExtension can be used in place of @ExtendWith({ DatabaseExtension.class,
WebServerExtension.class }).

@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(RetentionPolicy.RUNTIME)

@ExtendWith({ DatabaseExtension.class, WebServerExtension.class })
public @interface DatabaseAndWebServerExtension {

}

The above examples demonstrate how @ExtendWith can be applied at the class level or at the method
level; however, for certain use cases it makes sense for an extension to be registered declaratively
at the field or parameter level. Consider a RandomNumberExtension which generates random numbers
that can be injected into a field or via a parameter in a constructor, test method, or lifecycle
method. If the extension provides a @Random annotation that is meta-annotated with
@ExtendWith(RandomNumberExtension.class) (see listing below), the extension can be wused
transparently as in the following RandomNumberDemo example.

@Target({ ElementType.FIELD, ElementType.PARAMETER })
@Retention(RetentionPolicy.RUNTIME)
@ExtendWith(RandomNumberExtension.class)

public @interface Random {

}

class RandomNumberDemo {

// Use static randomNumber® field anywhere in the test class,

// including @BeforeAll or @AfterEach lifecycle methods.
@Random

154



private static Integer randomNumber®;

// Use randomNumber1 field in test methods and @BeforeEach
// or @AfterEach lifecycle methods.

©@Random

private int randomNumberT;

RandomNumberDemo(@Random int randomNumber2) {
// Use randomNumber2 in constructor.

@BeforeEach
void beforeEach(@Random int randomNumber3) {
// Use randomNumber3 in @BeforeEach method.

@Test
void test(@Random int randomNumber4) {
// Use randomNumber4 in test method.

The following code listing provides an example of how one might choose to implement such a
RandomNumberExtension. This implementation works for the use cases in RandomNumberDemo; however,
it may not prove robust enough to cover all use cases—for example, the random number
generation support is limited to integers; it wuses java.util.Random instead of
java.security.SecureRandom; etc. In any case, it is important to note which extension APIs are
implemented and for what reasons.

Specifically, RandomNumberExtension implements the following extension APIs:

* BeforeAllCallback: to support static field injection
» TestInstancePostProcessor: to support non-static field injection

* ParameterResolver: to support constructor and method injection

import static org.junit.platform.commons.support.AnnotationSupport.
findAnnotatedFields;

import java.lang.reflect.Field;
import java.util.function.Predicate;

import org.junit.jupiter.api.extension.BeforeAllCallback;

import org.junit.jupiter.api.extension.ExtensionContext;

import org.junit.jupiter.api.extension.ParameterContext;

import org.junit.jupiter.api.extension.ParameterResolver;

import org.junit.jupiter.api.extension.TestInstancePostProcessor;
import org.junit.platform.commons.support.ModifierSupport;

155



class RandomNumberExtension

156

implements BeforeAllCallback, TestInstancePostProcessor, ParameterResolver {

private final java.util.Random random = new java.util.Random(System.nanoTime());

/**

* Inject a random integer into static fields that are annotated with
* {@code @Random} and can be assigned an integer value.
*/
@lverride
public void beforeAll(ExtensionContext context) {
Class<?> testClass = context.getRequiredTest(Class();
injectFields(testClass, null, ModifierSupport::isStatic);
}

/**

* Inject a random integer into non-static fields that are annotated with
* {@code @Random} and can be assigned an integer value.
*/
@lverride
public void postProcessTestInstance(Object testInstance, ExtensionContext context)

Class<?> test(Class = context.getRequiredTest(Class();
injectFields(testClass, testInstance, ModifierSupport::isNotStatic);

}

/**
* Determine if the parameter is annotated with {@code @Random} and can be
* 3ssigned an integer value.
*/
@0verride
public boolean supportsParameter(ParameterContext pc, ExtensionContext ec) {
return pc.isAnnotated(Random.class) && isInteger(pc.getParameter().getType());
}

/**
* Resolve a random integer.
*/
@0verride
public Integer resolveParameter(ParameterContext pc, ExtensionContext ec) {
return this.random.nextInt();

}

private void injectFields(Class<?> testClass, Object testInstance,
Predicate<Field> predicate) {

predicate = predicate.and(field -> isInteger(field.getType()));
findAnnotatedFields(testClass, Random.class, predicate)
.forEach(field -> {
try {
field.setAccessible(true);



field.set(testInstance, this.random.nextInt());
}
catch (Exception ex) {
throw new RuntimeException(ex);
}
b))

private static boolean isInteger(Class<?> type) {

}

return type == Integer.class || type == int.class;

Extension Registration Order for @ExtendWith on Fields

Extensions registered declaratively via @ExtendWith on fields will be ordered
relative to @©RegisterExtension fields and other @ExtendWith fields using an
algorithm that is deterministic but intentionally nonobvious. However, @ExtendWith
fields can be ordered using the @0rder annotation. See the Extension Registration
Order tip for @RegisterExtension fields for details.

Extension Inheritance

Extensions registered declaratively via @ExtendWith on fields in superclasses will be
inherited.

See Extension Inheritance for details.

@ExtendWith fields may be either static or non-static. The documentation on Static
Fields and Instance Fields for @RegisterExtension fields also applies to @ExtendWith
fields.

Programmatic Extension Registration

Developers can register extensions programmatically by annotating fields in test classes with
@RegisterExtension.

When an extension is registered declaratively via @ExtendWith, it can typically only be configured via
annotations. In contrast, when an extension is registered via @RegisterExtension, it can be
configured programmatically—for example, in order to pass arguments to the extension’s
constructor, a static factory method, or a builder API.

@,

Extension Registration Order

By default, extensions registered programmatically via @RegisterExtension or
declaratively via @ExtendWith on fields will be ordered using an algorithm that is
deterministic but intentionally nonobvious. This ensures that subsequent runs of a
test suite execute extensions in the same order, thereby allowing for repeatable
builds. However, there are times when extensions need to be registered in an

157


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/RegisterExtension.html

explicit order. To achieve that, annotate @RegisterExtension fields or @ExtendWith
fields with @0rder.

Any @RegisterExtension field or @ExtendWith field not annotated with @0rder will be
ordered using the default order which has a value of Integer.MAX_VALUE / 2. This
allows @0rder annotated extension fields to be explicitly ordered before or after
non-annotated extension fields. Extensions with an explicit order value less than
the default order value will be registered before non-annotated extensions.
Similarly, extensions with an explicit order value greater than the default order
value will be registered after non-annotated extensions. For example, assigning an
extension an explicit order value that is greater than the default order value
allows before callback extensions to be registered last and after callback extensions
to be registered first, relative to other programmatically registered extensions.

Extension Inheritance
(r-) Extensions registered via @RegisterExtension or @ExtendWith on fields in
\ superclasses will be inherited.
See Extension Inheritance for details.
o @RegisterExtension fields must not be null (at evaluation time) but may be either
static or non-static.
Static Fields

If a @RegisterExtension field is static, the extension will be registered after extensions that are
registered at the class level via @ExtendWith. Such static extensions are not limited in which
extension APIs they can implement. Extensions registered via static fields may therefore implement
class-level and instance-level extension APIs such as BeforeAllCallback, AfterAllCallback,
TestInstancePostProcessor, and TestInstancePreDestroyCallback as well as method-level extension
APIs such as BeforeEachCallback, etc.

In the following example, the server field in the test class is initialized programmatically by using a
builder pattern supported by the WebServerExtension. The configured WebServerExtension will be
automatically registered as an extension at the class level —for example, in order to start the
server before all tests in the class and then stop the server after all tests in the class have
completed. In addition, static lifecycle methods annotated with @BeforeAll or @AfterAll as well as
@BeforeEach, @AfterEach, and @Test methods can access the instance of the extension via the server
field if necessary.

Registering an extension via a static field in Java
class WebServerDemo {
ORegisterExtension
static WebServerExtension server = WebServerExtension.builder()

.enableSecurity(false)
.build();

158


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Order.html

@Test
void getProductlist() {
WebClient webClient = new WebClient();
String serverUrl = server.getServerUrl();
// Use WebClient to connect to web server using serverUrl and verify response
assertEquals(200, webClient.get(serverUrl + "/products").getResponseStatus());

Static Fields in Kotlin

The Kotlin programming language does not have the concept of a static field. However, the
compiler can be instructed to generate a private static field using the @JvmStatic annotation in
Kotlin. If you want the Kotlin compiler to generate a public static field, you can use the @JvmField
annotation instead.

The following example is a version of the WebServerDemo from the previous section that has been
ported to Kotlin.

Registering an extension via a static field in Kotlin

class KotlinWebServerDemo {
companion object {

@JvmField

@RegisterExtension

val server =

WebServerExtension

.builder()
.enableSecurity(false)
build()!!

@Test
fun getProductlList() {
// Use WebClient to connect to web server using serverUrl and verify response
val webClient = WebClient()
val serverUrl = server.serverUrl
assertEquals(200, webClient.get("$serverUrl/products").responseStatus)

Instance Fields

If a ERegisterExtension field is non-static (i.e., an instance field), the extension will be registered
after the test class has been instantiated and after each registered TestInstancePostProcessor has
been given a chance to post-process the test instance (potentially injecting the instance of the
extension to be used into the annotated field). Thus, if such an instance extension implements class-

159



level or instance-level extension APIs such as BeforeAllCallback, AfterAllCallback, or
TestInstancePostProcessor, those APIs will not be honored. Instance extensions will be registered
before extensions that are registered at the method level via @ExtendWith.

In the following example, the docs field in the test class is initialized programmatically by invoking
a custom lookUpDocsDir () method and supplying the result to the static forPath() factory method in
the DocumentationExtension. The configured DocumentationExtension will be automatically registered
as an extension at the method level. In addition, @BeforeEach, @AfterEach, and @Test methods can
access the instance of the extension via the docs field if necessary.

An extension registered via an instance field
class DocumentationDemo {

static Path lookUpDocsDir() {
// return path to docs dir

}

@RegisterExtension
DocumentationExtension docs = DocumentationExtension.forPath(lookUpDocsDir());

@Test
void generateDocumentation() {
// use this.docs ...

}

Automatic Extension Registration

In addition to declarative extension registration and programmatic extension registration support
using annotations, JUnit Jupiter also supports global extension registration via Java’s Serviceloader
mechanism, allowing third-party extensions to be auto-detected and automatically registered based
on what is available in the classpath.

Specifically, a custom extension can be registered by supplying its fully qualified class name in a file
named org.junit.jupiter.api.extension.Extension within the /META-INF/services folder in its
enclosing JAR file.

Enabling Automatic Extension Detection

Auto-detection is an advanced feature and is therefore not enabled by default. To enable it, set the
junit.jupiter.extensions.autodetection.enabled configuration parameter to true. This can be
supplied as a JVM system property, as a configuration parameter in the LauncherDiscoveryRequest
that is passed to the Launcher, or via the JUnit Platform configuration file (see Configuration
Parameters for details).

For example, to enable auto-detection of extensions, you can start your JVM with the following
system property.

-Djunit.jupiter.extensions.autodetection.enabled=true

160


https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html

When auto-detection is enabled, extensions discovered via the Serviceloader mechanism will be
added to the extension registry after JUnit Jupiter’s global extensions (e.g., support for TestInfo,
TestReporter, etc.).

Filtering Auto-detected Extensions

The list of auto-detected extensions can be filtered using include and exclude patterns via the
following configuration parameters:

junit.jupiter.extensions.autodetection.include=<patterns>

Comma-separated list of include patterns for auto-detected extensions.

junit.jupiter.extensions.autodetection.exclude=<patterns>

Comma-separated list of exclude patterns for auto-detected extensions.

Include patterns are applied before exclude patterns. If both include and exclude patterns are
provided, only extensions that match at least one include pattern and do not match any exclude
pattern will be auto-detected.

See Pattern Matching Syntax for details on the pattern syntax.

Extension Inheritance

Registered extensions are inherited within test class hierarchies with top-down semantics.
Similarly, extensions registered at the class-level are inherited at the method-level. This applies to
all extensions, independent of how they are registered (declaratively or programmatically).

This means that extensions registered declaratively via @ExtendWith on a superclass will be
registered before extensions registered declaratively via @ExtendWith on a subclass.

Similarly, extensions registered programmatically via @RegisterExtension or @ExtendWith on fields in
a superclass will be registered before extensions registered programmatically via
@RegisterExtension or @ExtendWith on fields in a subclass, unless @0rder is used to alter that behavior
(see Extension Registration Order for details).

A specific extension implementation can only be registered once for a given
o extension context and its parent contexts. Consequently, any attempt to register a
duplicate extension implementation will be ignored.

Conditional Test Execution

ExecutionCondition defines the Extension API for programmatic, conditional test execution.

An ExecutionCondition is evaluated for each container (e.g., a test class) to determine if all the tests it
contains should be executed based on the supplied ExtensionContext. Similarly, an
ExecutionCondition is evaluated for each test to determine if a given test method should be executed
based on the supplied ExtensionContext.

When multiple ExecutionCondition extensions are registered, a container or test is disabled as soon

161


https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExecutionCondition.html

as one of the conditions returns disabled. Thus, there is no guarantee that a condition is evaluated
because another extension might have already caused a container or test to be disabled. In other
words, the evaluation works like the short-circuiting boolean OR operator.

See the source code of DisabledCondition and @Disabled for concrete examples.

Deactivating Conditions

Sometimes it can be useful to run a test suite without certain conditions being active. For example,
you may wish to run tests even if they are annotated with @Disabled in order to see if they are still
broken. To do this, provide a pattern for the junit.jupiter.conditions.deactivate configuration
parameter to specify which conditions should be deactivated (i.e., not evaluated) for the current test
run. The pattern can be supplied as a JVM system property, as a configuration parameter in the
LauncherDiscoveryRequest that is passed to the Launcher, or via the JUnit Platform configuration file
(see Configuration Parameters for details).

For example, to deactivate JUnit’s @Disabled condition, you can start your JVM with the following
system property.

-Djunit.jupiter.conditions.deactivate=org.junit.*DisabledCondition

Pattern Matching Syntax

Refer to Pattern Matching Syntax for details.

Test Instance Pre-construct Callback

TestInstancePreConstructCallback defines the API for Extensions that wish to be invoked prior to
test instances being constructed (by a constructor call or via TestInstanceFactory).

This extension provides a symmetric call to TestInstancePreDestroyCallback and is useful in
combination with other extensions to prepare constructor parameters or keeping track of test
instances and their lifecycle.

Accessing the test-scoped ExtensionContext

o You may override the getTestInstantiationExtensionContextScope(::-) method to
return TEST_METHOD to make test-specific data available to your extension
implementation or if you want to keep state on the test method level.

Test Instance Factories

TestInstanceFactory defines the API for Extensions that wish to create test class instances.

Common use cases include acquiring the test instance from a dependency injection framework or
invoking a static factory method to create the test class instance.

If no TestInstanceFactory is registered, the framework will invoke the sole constructor for the test
class to instantiate it, potentially resolving constructor arguments via registered ParameterResolver
extensions.

162


https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/DisabledCondition.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/Disabled.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstancePreConstructCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstanceFactory.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstancePreDestroyCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstanceFactory.html

Extensions that implement TestInstanceFactory can be registered on test interfaces, top-level test
classes, or @Nested test classes.

Registering multiple extensions that implement TestInstanceFactory for any single
class will result in an exception being thrown for all tests in that class, in any

A subclass, and in any nested class. Note that any TestInstanceFactory registered in a
superclass or enclosing class (i.e., in the case of a @Nested test class) is inherited. It is
the user’s responsibility to ensure that only a single TestInstanceFactory is
registered for any specific test class.

Accessing the test-scoped ExtensionContext

o You may override the getTestInstantiationExtensionContextScope(:::) method to
return TEST_METHOD to make test-specific data available to your extension
implementation or if you want to keep state on the test method level.

Test Instance Post-processing

TestInstancePostProcessor defines the API for Extensions that wish to post process test instances.

Common use cases include injecting dependencies into the test instance, invoking custom
initialization methods on the test instance, etc.

For a concrete example, consult the source code for the MockitoExtension and the SpringExtension.

Accessing the test-scoped ExtensionContext

o You may override the getTestInstantiationExtensionContextScope(::-) method to
return TEST_METHOD to make test-specific data available to your extension
implementation or if you want to keep state on the test method level.

Test Instance Pre-destroy Callback

TestInstancePreDestroyCallback defines the API for Extensions that wish to process test instances
after they have been used in tests and before they are destroyed.

Common use cases include cleaning dependencies that have been injected into the test instance,
invoking custom de-initialization methods on the test instance, etc.

Parameter Resolution

ParameterResolver defines the Extension API for dynamically resolving parameters at runtime.

If a test class constructor, test method, or lifecycle method (see Definitions) declares a parameter, the
parameter must be resolved at runtime by a ParameterResolver. A ParameterResolver can either be
built-in (see TestInfoParameterResolver) or registered by the user. Generally speaking, parameters
may be resolved by name, type, annotation, or any combination thereof.

If you wish to implement a custom ParameterResolver that resolves parameters based solely on the

163


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstancePostProcessor.html
https://github.com/mockito/mockito/blob/release/2.x/subprojects/junit-jupiter/src/main/java/org/mockito/junit/jupiter/MockitoExtension.java
https://github.com/spring-projects/spring-framework/tree/HEAD/spring-test/src/main/java/org/springframework/test/context/junit/jupiter/SpringExtension.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstancePreDestroyCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html
https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-engine/src/main/java/org/junit/jupiter/engine/extension/TestInfoParameterResolver.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html

type of the parameter, you may find it convenient to extend the TypeBasedParameterResolver which
serves as a generic adapter for such use cases.

For concrete examples, consult the source code for CustomTypeParameterResolver,
CustomAnnotationParameterResolver, and MapOfListsTypeBasedParameterResolver.

Due to a bug in the byte code generated by javac on JDK versions prior to JDK 9,
looking up annotations on parameters directly via the core
java.lang.reflect.Parameter API will always fail for inner class constructors (e.g., a
constructor in a @Nested test class).

The ParameterContext API supplied to ParameterResolver implementations therefore
includes the following convenience methods for correctly looking up annotations

A on parameters. Extension authors are strongly encouraged to use these methods
instead of those provided in java.lang.reflect.Parameter in order to avoid this bug
in the JDK.

* boolean isAnnotated((lass<? extends Annotation> annotationType)
» Optional<A> findAnnotation(Class<A> annotationType)

* List<A> findRepeatableAnnotations(Class<A> annotationType)

Accessing the test-scoped ExtensionContext

You may override the getTestInstantiationExtensionContextScope(::-) method to

o return TEST_METHOD to support injecting test specific data into constructor
parameters of the test class instance. Doing so causes a test-specific
ExtensionContext to be used while resolving constructor parameters, unless the test
instance lifecycle is set to PER_CLASS.

Parameter resolution for methods called from extensions

@ Other extensions can also leverage registered ParameterResolvers for method and
- constructor invocations, using the ExecutableInvoker available via the
getExecutableInvoker () method in the ExtensionContext.

Parameter Conflicts

If multiple implementations of ParameterResolver that support the same type are registered for a
test, a ParameterResolutionException will be thrown, with a message to indicate that competing
resolvers have been discovered. See the following example:

Conflicting parameter resolution due to multiple resolvers claiming support for integers
public class ParameterResolverConflictDemo {
@Test
@ExtendWith({ FirstIntegerResolver.class, SecondIntegerResolver.class })

void testInt(int i) {
// Test will not run due to ParameterResolutionException

164


https://github.com/junit-team/junit-framework/tree/r5.14.1/junit-jupiter-api/src/main/java/org/junit/jupiter/api/extension/support/TypeBasedParameterResolver.java
https://github.com/junit-team/junit-framework/tree/r5.14.1/jupiter-tests/src/test/java/org/junit/jupiter/engine/execution/injection/sample/CustomTypeParameterResolver.java
https://github.com/junit-team/junit-framework/tree/r5.14.1/jupiter-tests/src/test/java/org/junit/jupiter/engine/execution/injection/sample/CustomAnnotationParameterResolver.java
https://github.com/junit-team/junit-framework/tree/r5.14.1/jupiter-tests/src/test/java/org/junit/jupiter/engine/execution/injection/sample/MapOfListsTypeBasedParameterResolver.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterContext.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExecutableInvoker.html

assertEquals(1, 1);

}

static class FirstIntegerResolver implements ParameterResolver {

@verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType() == int.class;

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 1;

}
}

static class SecondIntegerResolver implements ParameterResolver {

@override
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType() == int.class;

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 2;

}

If the conflicting ParameterResolver implementations are applied to different test methods as shown
in the following example, no conflict occurs.

Fine-grained registration to avoid conflict
public class ParameterResolverNoConflictDemo {

@Test

@ExtendWith(FirstIntegerResolver.class)

void firstResolution(int i) {
assertEquals(1, 1);

}

@Test
@ExtendWith(SecondIntegerResolver.class)
void secondResolution(int i) {

165



assertEquals(2, 1);
}

static class FirstIntegerResolver implements ParameterResolver {

@verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType() == int.class;

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 1;

}
}

static class SecondIntegerResolver implements ParameterResolver {

@override
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType() == int.class;

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 2;

}

If the conflicting ParameterResolver implementations need to be applied to the same test method,
you can implement a custom type or custom annotation as illustrated by
CustomTypeParameterResolver and CustomAnnotationParameterResolver, respectively.

Custom type to resolve duplicate types

public class ParameterResolverCustomTypeDemo {

@Test
@ExtendWith({ FirstIntegerResolver.class, SecondIntegerResolver.class })
void testInt(Integer i, WrappedInteger wrappedInteger) {

assertEquals(1, i);

assertEquals(2, wrappedInteger.value);

}

static class FirstIntegerResolver implements ParameterResolver {

166


https://github.com/junit-team/junit-framework/tree/r5.14.1/jupiter-tests/src/test/java/org/junit/jupiter/engine/execution/injection/sample/CustomTypeParameterResolver.java
https://github.com/junit-team/junit-framework/tree/r5.14.1/jupiter-tests/src/test/java/org/junit/jupiter/engine/execution/injection/sample/CustomAnnotationParameterResolver.java

@0verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType().equals(Integer.class);

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 1;
}
}

static class SecondIntegerResolver implements ParameterResolver {

@0verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType().equals(WrappedInteger
.class);

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return new WrappedInteger(2);

}
}

static class WrappedInteger {
private final int value;

public WrappedInteger(int value) {
this.value = value;

}

A custom annotation makes the duplicate type distinguishable from its counterpart:

Custom annotation to resolve duplicate types
public class ParameterResolverCustomAnnotationDemo {
@Test
void testInt(@FirstInteger Integer first, @SecondInteger Integer second) {

assertEquals(1, first);
assertEquals(2, second);

167



}

@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
@ExtendWith(FirstInteger.Extension.class)
public @interface FirstInteger {

class Extension implements ParameterResolver {

@0verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType().equals(Integer.class)
&& !parameterContext.isAnnotated(SecondInteger.class);

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 1;

}
}

@Target(ElementType.PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
@ExtendWith(SecondInteger.Extension.class)
public @interface SecondInteger {

class Extension implements ParameterResolver {

@0verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameterContext.isAnnotated(SecondInteger.class);

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return 2;

}

JUnit includes some built-in parameter resolvers that can cause conflicts if a resolver attempts to
claim their supported types. For example, TestInfo provides metadata about tests. See Dependency
Injection for Constructors and Methods for details. Third-party frameworks such as Spring may also
define parameter resolvers. Apply one of the techniques in this section to resolve any conflicts.

168


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestInfo.html

Parameterized tests are another potential source of conflict. Ensure that tests annotated with
@ParameterizedTest are not also annotated with @Test and see Consuming Arguments for more
details.

Test Result Processing

TestWatcher defines the API for extensions that wish to process the results of test method executions.
Specifically, a TestWatcher will be invoked with contextual information for the following events.

testDisabled: invoked after a disabled test method has been skipped

* testSuccessful: invoked after a test method has completed successfully

testAborted: invoked after a test method has been aborted

e testFailed: invoked after a test method has failed

In contrast to the definition of "test method" presented in Definitions, in this
o context test method refers to any @Test method or @TestTemplate method (for
example, a @RepeatedTest or @ParameterizedTest).

Extensions implementing this interface can be registered at the class level, instance level, or
method level. When registered at the class level, a TestWatcher will be invoked for any contained
test method including those in @Nested classes. When registered at the method level, a TestWatcher
will only be invoked for the test method for which it was registered.

If a TestWatcher is registered via a non-static (instance) field — for example, using

@RegisterExtension - and the test class is configured  with

@TestInstance(Lifecycle.PER_METHOD) semantics (which is the default lifecycle

mode), the TestWatcher will not be invoked with events for @TestTemplate methods
A (for example, @RepeatedTest or @ParameterizedTest).

To ensure that a TestWatcher is invoked for all test methods in a given class, it is
therefore recommended that the TestWatcher be registered at the class level with
@ExtendWith or via a static field with @RegisterExtension or @ExtendWith.

If there is a failure at the class level — for example, an exception thrown by a @BeforeAll method —
no test results will be reported. Similarly, if the test class is disabled via an ExecutionCondition — for
example, @Disabled — no test results will be reported.

In contrast to other Extension APIs, a TestWatcher is not permitted to adversely influence the
execution of tests. Consequently, any exception thrown by a method in the TestWatcher API will be
logged at WARNING level and will not be allowed to propagate or fail test execution.

Any instances of ExtensionContext.Store.CloseableResource stored in the Store of

A the provided ExtensionContext will be closed before methods in the TestWatcher API
are invoked (see Keeping State in Extensions). You can use the parent context’s
Store to work with such resources.

169


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestWatcher.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.html

Test Lifecycle Callbacks

The following interfaces define the APIs for extending tests at various points in the test execution
lifecycle. Consult the following sections for examples and the Javadoc for each of these interfaces in
the org.junit.jupiter.api.extension package for further details.

* BeforeAllCallback
o BeforeClassTemplateInvocationCallback (only applicable for class templates)
= BeforeEachCallback
= BeforeTestExecutionCallback
= AfterTestExecutionCallback
= AfterEachCallback
o AfterClassTemplateInvocationCallback (only applicable for class templates)
* AfterAllCallback

Implementing Multiple Extension APIs

o Extension developers may choose to implement any number of these interfaces
within a single extension. Consult the source code of the SpringExtension for a
concrete example.

Before and After Test Execution Callbacks

BeforeTestExecutionCallback and AfterTestExecutionCallback define the APIs for Extensions that
wish to add behavior that will be executed immediately before and immediately after a test method
is executed, respectively. As such, these callbacks are well suited for timing, tracing, and similar use
cases. If you need to implement callbacks that are invoked around @BeforeEach and @AfterEach
methods, implement BeforeEachCallback and AfterEachCallback instead.

The following example shows how to use these callbacks to calculate and log the execution time of
a test method. TimingExtension implements both BeforeTestExecutionCallback and
AfterTestExecutionCallback in order to time and log the test execution.

An extension that times and logs the execution of test methods

import java.lang.reflect.Method;
import java.util.logging.Logger;

import org.junit.jupiter.api.extension.AfterTestExecutionCallback;
import org.junit.jupiter.api.extension.BeforeTestExecutionCallback;
import org.junit.jupiter.api.extension.ExtensionContext;

import org.junit.jupiter.api.extension.ExtensionContext.Namespace;
import org.junit.jupiter.api.extension.ExtensionContext.Store;

public class TimingExtension implements BeforeTestExecutionCallback,
AfterTestExecutionCallback {

170


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/package-summary.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/BeforeAllCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/BeforeClassTemplateInvocationCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/BeforeEachCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/BeforeTestExecutionCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/AfterTestExecutionCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/AfterEachCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/AfterClassTemplateInvocationCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/AfterAllCallback.html
https://github.com/spring-projects/spring-framework/tree/HEAD/spring-test/src/main/java/org/springframework/test/context/junit/jupiter/SpringExtension.java
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/BeforeTestExecutionCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/AfterTestExecutionCallback.html

private static final Logger logger = Logger.getlLogger(TimingExtension.class
.getName());

private static final String START_TIME = "start time";

@0verride

public void beforeTestExecution(ExtensionContext context) throws Exception {
getStore(context).put(START_TIME, System.currentTimeMillis());

}

@0verride

public void afterTestExecution(ExtensionContext context) throws Exception {
Method testMethod = context.getRequiredTestMethod();
long startTime = getStore(context).remove(START_TIME, long.class);
long duration = System.currentTimeMillis() - startTime;

logger.info(() ->
String.format("Method [%s] took %s ms.", testMethod.getName(), duration));
}

private Store getStore(ExtensionContext context) {
return context.getStore(Namespace.create(getClass(), context
.getRequiredTestMethod()));
}

Since the TimingExtensionTests class registers the TimingExtension via @ExtendWith, its tests will have
this timing applied when they execute.

A test class that uses the example TimingExtension

@ExtendWith(TimingExtension.class)
class TimingExtensionTests {

@Test

void sleep2@ms() throws Exception {
Thread.sleep(20);

}

@Test

void sleep5@ms() throws Exception {
Thread.sleep(50);

}

The following is an example of the logging produced when TimingExtensionTests is run.

171



INFO: Method [sleep20ms] took 24 ms.
INFO: Method [sleep5@ms] took 53 ms.

Exception Handling

Exceptions thrown during the test execution may be intercepted and handled accordingly before
propagating further, so that certain actions like error logging or resource releasing may be defined
in specialized Extensions. JUnit Jupiter offers API for Extensions that wish to handle exceptions
thrown during @Test methods via TestExecutionExceptionHandler and for those thrown during one
of test lifecycle methods (@BeforeAll, @BeforeEach, @AfterEach and @AfterAll) via
LifecycleMethodExecutionExceptionHandler.

The following example shows an extension which will swallow all instances of IOException but
rethrow any other type of exception.

An exception handling extension that filters IOExceptions in test execution
public class IgnoreIOExceptionExtension implements TestExecutionExceptionHandler {

@0verride
public void handleTestExecutionException(ExtensionContext context, Throwable
throwable)
throws Throwable {

if (throwable instanceof IOException) {
return;

}

throw throwable;

Another example shows how to record the state of an application under test exactly at the point of
unexpected exception being thrown during setup and cleanup. Note that unlike relying on lifecycle
callbacks, which may or may not be executed depending on the test status, this solution guarantees
execution immediately after failing @BeforeAll, @BeforeEach, @AfterEach or @AfterAll.

An exception handling extension that records application state on error

class RecordStateOnErrorExtension implements LifecycleMethodExecutionExceptionHandler

{

@lverride
public void handleBeforeAllMethodExecutionException(ExtensionContext context,
Throwable ex)
throws Throwable {
memoryDumpForFurtherInvestigation("Failure recorded during class setup");
throw ex;

172


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestExecutionExceptionHandler.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/LifecycleMethodExecutionExceptionHandler.html

@0verride
public void handleBeforeEachMethodExecutionException(ExtensionContext context,
Throwable ex)
throws Throwable {
memoryDumpForFurtherInvestigation("Failure recorded during test setup");
throw ex;

}

@0verride
public void handleAfterEachMethodExecutionException(ExtensionContext context,
Throwable ex)
throws Throwable {
memoryDumpForFurtherInvestigation("Failure recorded during test cleanup");
throw ex;

}

@verride
public void handleAfterAllMethodExecutionException(ExtensionContext context,
Throwable ex)
throws Throwable {
memoryDumpForFurtherInvestigation("Failure recorded during class cleanup");
throw ex;

Multiple execution exception handlers may be invoked for the same lifecycle method in order of
declaration. If one of the handlers swallows the handled exception, subsequent ones will not be
executed, and no failure will be propagated to JUnit engine, as if the exception was never thrown.
Handlers may also choose to rethrow the exception or throw a different one, potentially wrapping

the original.

Extensions implementing LifecyclelMethodExecutionExceptionHandler that wish to handle exceptions
thrown during @BeforeAll or @AfterAll need to be registered on a class level, while handlers for

BeforeEach and AfterEach may be also registered for individual test methods.

Registering multiple exception handling extensions

// Register handlers for @Test, @BeforeEach, @AfterEach as well as @BeforeAll and
EAfterAll

@ExtendWith(ThirdExecutedHandler.class)

class MultipleHandlersTestCase {

// Register handlers for @Test, @BeforeEach, @AfterEach only
@ExtendWith(SecondExecutedHandler.class)
@ExtendWith(FirstExecutedHandler.class)

@Test

void testMethod() {

}

173


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/LifecycleMethodExecutionExceptionHandler.html

Pre-Interrupt Callback

PreInterruptCallback defines the API for Extensions that wish to react on timeouts before the
Thread.interrupt() is called.

Please refer to Debugging Timeouts for additional information.

Intercepting Invocations

InvocationInterceptor defines the API for Extensions that wish to intercept calls to test code.

The following example shows an extension that executes all test methods in Swing’s Event Dispatch
Thread.

An extension that executes tests in a user-defined thread
public class SwingEdtInterceptor implements InvocationInterceptor {

@0verride

public void interceptTestMethod(Invocation<Void> invocation,
ReflectiveInvocationContext<Method> invocationContext,
ExtensionContext extensionContext) throws Throwable {

AtomicReference<Throwable> throwable = new AtomicReference<>();

SwingUtilities.invokeAndWait(() -> {
try {
invocation.proceed();
+
catch (Throwable t) {
throwable.set(t);
}
1)
Throwable t = throwable.get();
if (t !'= null) {

throw t;
}
}
}
Accessing the test-scoped ExtensionContext
You may override the getTestInstantiationExtensionContextScope(::*) method to
o return TEST_METHOD to make test-specific data available to your extension

implementation of interceptTestClassConstructor or if you want to keep state on
the test method level.

174


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/PreInterruptCallback.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/InvocationInterceptor.html

Providing Invocation Contexts for Class Templates

A @ClassTemplate class can only be executed when at least one
(lassTemplateInvocationContextProvider is registered. Each such provider is responsible for
providing a Stream of ClassTemplateInvocationContext instances. Each context may specify a custom
display name and a list of additional extensions that will only be used for the next invocation of the
@ClassTemplate.

The following example shows how to write a class template as well as how to register and
implement a ClassTemplateInvocationContextProvider.

A class template with accompanying extension

@ClassTemplate
@ExtendWith(ClassTemplateDemo.MyClassTemplateInvocationContextProvider.class)
class ClassTemplateDemo {

static final List<String> WELL_KNOWN_FRUITS
= unmodifiableList(Arrays.asList("apple", "banana", "lemon"));

private String fruit;

@Test

void notNull() {
assertNotNull(fruit);

}

@Test
void wellKnown() {
assertTrue(WELL_KNOWN_FRUITS.contains(fruit));

}

public class MyClassTemplateInvocationContextProvider
implements ClassTemplateInvocationContextProvider {

@0verride
public boolean supportsClassTemplate(ExtensionContext context) {
return true;

}

@0verride
public Stream<ClassTemplateInvocationContext>
provideClassTemplateInvocationContexts(ExtensionContext context) {

return Stream.of(invocationContext("apple"), invocationContext("banana"));

}

private ClassTemplateInvocationContext invocationContext(String parameter) {
return new ClassTemplateInvocationContext() {
@0verride

175


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassTemplate.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ClassTemplateInvocationContextProvider.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ClassTemplateInvocationContext.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/ClassTemplate.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ClassTemplateInvocationContextProvider.html

public String getDisplayName(int invocationIndex) {
return parameter;

}

@0verride
public List<Extension> getAdditionalExtensions() {
return singletonlList(new TestInstancePostProcessor() {
@0verride
public void postProcessTestInstance(
Object testInstance, ExtensionContext context) {
((ClassTemplateDemo) testInstance).fruit = parameter;

b

In this example, the class template will be invoked twice, meaning all test methods in the class
template will be executed twice. The display names of the invocations will be apple and banana as
specified by the invocation context. Each invocation registers a custom TestInstancePostProcessor
which is used to inject a value into a field. The output when using the ConsoleLauncher is as follows.

L— C(ClassTemplateDemo v
— apple v
|  F— notNull() v
|  — wellKnown() v
L— banana v
F— notNull() v
L— wellKnown() v

The ClassTemplatelnvocationContextProvider extension API is primarily intended for implementing
different kinds of tests that rely on repetitive invocation of all test methods in a test class albeit in
different contexts — for example, with different parameters, by preparing the test class instance
differently, or multiple times without modifying the context. Please refer to the implementations of
Parameterized Classes which uses this extension point to provide its functionality.

Providing Invocation Contexts for Test Templates

A @TestTemplate method can only be executed  when at  least one
TestTemplateInvocationContextProvider is registered. Each such provider is responsible for
providing a Stream of TestTemplateInvocationContext instances. Each context may specify a custom
display name and a list of additional extensions that will only be used for the next invocation of the
@TestTemplate method.

The following example shows how to write a test template as well as how to register and implement
a TestTemplateInvocationContextProvider.

176


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestInstancePostProcessor.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ClassTemplateInvocationContextProvider.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestTemplate.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestTemplateInvocationContextProvider.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestTemplateInvocationContext.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/TestTemplate.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestTemplateInvocationContextProvider.html

A test template with accompanying extension
final List<String> fruits = Arrays.aslList("apple"”, "banana", "lemon");

@TestTemplate

@ExtendWith(MyTestTemplateInvocationContextProvider.class)

void testTemplate(String fruit) {
assertTrue(fruits.contains(fruit));

}

public class MyTestTemplateInvocationContextProvider
implements TestTemplateInvocationContextProvider {

@0verride
public boolean supportsTestTemplate(ExtensionContext context) {
return true;

}

@0verride
public Stream<TestTemplateInvocationContext>
provideTestTemplateInvocationContexts(
ExtensionContext context) {

return Stream.of(invocationContext("apple"), invocationContext("banana"));

}

private TestTemplateInvocationContext invocationContext(String parameter) {
return new TestTemplateInvocationContext() {
@0verride
public String getDisplayName(int invocationIndex) {
return parameter;

}

@0verride
public List<Extension> getAdditionalExtensions() {
return Collections.singletonlList(new ParameterResolver() {
@override
public boolean supportsParameter(ParameterContext
parameterContext,
ExtensionContext extensionContext) {
return parameterContext.getParameter().getType().equals(
String.class);

}

@0verride
public Object resolveParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return parameter;

H;

177



In this example, the test template will be invoked twice. The display names of the invocations will
be apple and banana as specified by the invocation context. Each invocation registers a custom
ParameterResolver which is used to resolve the method parameter. The output when using the
Consolelauncher is as follows.

L— testTemplate(String) v

— apple v
L— banana v

The TestTemplateInvocationContextProvider extension API is primarily intended for implementing
different kinds of tests that rely on repetitive invocation of a test-like method albeit in different
contexts — for example, with different parameters, by preparing the test class instance differently,
or multiple times without modifying the context. Please refer to the implementations of Repeated
Tests or Parameterized Tests which use this extension point to provide their functionality.

Keeping State in Extensions

Usually, an extension is instantiated only once. So the question becomes relevant: How do you keep
the state from one invocation of an extension to the next? The ExtensionContext API provides a
Store exactly for this purpose. Extensions may put values into a store for later retrieval.

(r') See the TimingExtension for an example of using the Store with a method-level
- scope.

178


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ParameterResolver.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/TestTemplateInvocationContextProvider.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.Store.html

WWWW

WWWW

My TRy

K TR
M WMWW

The ExtensionContext and Store hierarchy

As illustrated by the diagram above, stores are hierarchical in nature. When looking up a value, if
no value is stored in the current ExtensionContext for the supplied key, the stores of the context’s
ancestors will be queried for a value with the same key in the Namespace used to create this store.
The root ExtensionContext represents the engine level so its Store may be used to store or cache
values that are used by multiple test classes or extension. The StoreScope enum allows to go beyond
even that and access the stores on the level of the current ExecutionRequest or LauncherSession
which can be used to share data across test engines or inject data from a registered
LauncherSessionListener, respectively. Please consult the Javadoc of ExtensionContext, Store, and
StoreScope for details.

Resource management via Auto(loseable

An extension context store is bound to its extension context lifecycle. When an
extension context lifecycle ends it closes its associated store. As of JUnit 5.13, all

o stored values that are instances of AutoCloseable are notified by an invocation of
their close() method in the inverse order they were added in (unless the
junit.jupiter.extensions.store.close.autocloseable.enabled configuration
parameter is set to false). Older versions only supported CloseableResource, which
is deprecated but still available for backward compatibility.

An example implementation of AutoCloseable is shown below, using an HttpServer resource.
HttpServer resource implementing AutoCloseable
class HttpServerResource implements AutoCloseable {

private final HttpServer httpServer;

179


attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.StoreScope.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherSession.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.Store.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.StoreScope.html

HttpServerResource(int port) throws IOException {
InetAddress loopbackAddress = InetAddress.getlLoopbackAddress();
this.httpServer = HttpServer.create(new InetSocketAddress(loopbackAddress,
port), 0);
}

HttpServer getHttpServer() {
return httpServer;

}

void start() {
// Example handler
httpServer.createContext("/example", exchange -> {
String body = "This is a test";
exchange.sendResponseHeaders(200, body.length());
try (OutputStream os = exchange.getResponseBody()) {
os.write(body.getBytes(UTF_8));
}
i
httpServer.setExecutor(null);
httpServer.start();
}

@0verride

public void close() {
httpServer.stop(0);

}

This resource can then be stored in the desired ExtensionContext. It may be stored at class or
method level, if desired, but this may add unnecessary overhead for this type of resource. For this
example it might be prudent to store it at root level and instantiate it lazily to ensure it’s only
created once per test run and reused across different test classes and methods.

Lazily storing in root context with Store.getOrComputeIfAbsent

public class HttpServerExtension implements ParameterResolver {

@0verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return HttpServer.class.equals(parameterContext.getParameter().getType());

}

@0verride
public Object resolveParameter (ParameterContext parameterContext, ExtensionContext
extensionContext) {

ExtensionContext rootContext = extensionContext.getRoot();

180



ExtensionContext.Store store = rootContext.getStore(Namespace.GLOBAL);
String key = HttpServerResource.class.getName();
HttpServerResource resource = store.getOrComputelfAbsent(key, __ -> {
try {
HttpServerResource serverResource = new HttpServerResource(0);
serverResource.start();
return serverResource;
}
catch (IOException e) {
throw new UncheckedIOException("Failed to create HttpServerResource",

e);
+
}, HttpServerResource.class);
return resource.getHttpServer();
}
}

A test case using the HttpServerExtension

@ExtendWith(HttpServerExtension.class)
public class HttpServerDemo {

@Test
void httpCall(HttpServer server) throws Exception {
String hostName = server.getAddress().getHostName();
int port = server.getAddress().getPort();
String rawlrl = String.format("http://%s:%d/example", hostName, port);
URL requestUrl = URI.create(rawlrl).toURL();

String responseBody = sendRequest(requestUrl);

assertEquals("This is a test", responseBody);

}

private static String sendRequest(URL url) throws IOException {
HttpURLConnection connection = (HttpURLConnection) url.openConnection();
int contentlLength = connection.getContentlLength();
try (InputStream response = url.openStream()) {
byte[] content = new byte[contentLength];
assertEquals(contentlLength, response.read(content));
return new String(content, UTF_8);

}
}
}
Migration Note for Resource Cleanup
(r) Starting with JUnit Jupiter 5.13, the framework automatically closes resources
- stored in the ExtensionContext.Store that implement AutoCloseable. In earlier

versions, only resources implementing Store.CloseableResource were

181



automatically closed.

If you're developing an extension that needs to support both JUnit Jupiter 5.13+
and earlier versions and your extension stores resources that need to be cleaned
up, you should implement both interfaces:

public class MyResource implements Store.CloseableResource,
AutoCloseable {
@lverride
public void close() throws Exception {
// Resource cleanup code

}

This ensures that your resource will be properly closed regardless of which JUnit
Jupiter version is being used.

Supported Utilities in Extensions

The junit-platform-commons artifact provides maintained utilities for working with annotations,
classes, reflection, classpath scanning, and conversion tasks. These utilities can be found in the
org.junit.platform.commons.support and its subpackages. TestEngine and Extension authors are
encouraged to use these supported utilities in order to align with the behavior of the JUnit Platform
and JUnit Jupiter.

Annotation Support

AnnotationSupport provides static utility methods that operate on annotated elements (e.g.,
packages, annotations, classes, interfaces, constructors, methods, and fields). These include
methods to check whether an element is annotated or meta-annotated with a particular annotation,
to search for specific annotations, and to find annotated methods and fields in a class or interface.
Some of these methods search on implemented interfaces and within class hierarchies to find
annotations. Consult the Javadoc for AnnotationSupport for further details.

The isAnnotated() methods do not find repeatable annotations. To check for

o repeatable annotations, use one of the findRepeatableAnnotations() methods and
verify that the returned list is not empty.

o See also: Field and Method Search Semantics

Class Support

(lassSupport provides static utility methods for working with classes (i.e.,, instances of
java.lang.(lass). Consult the Javadoc for ClassSupport for further details.

182


attachment$api//org.junit.platform.commons/org/junit/platform/commons/support/package-summary.html
attachment$api//org.junit.platform.commons/org/junit/platform/commons/support/AnnotationSupport.html
attachment$api//org.junit.platform.commons/org/junit/platform/commons/support/ClassSupport.html

Reflection Support

ReflectionSupport provides static utility methods that augment the standard JDK reflection and
class-loading mechanisms. These include methods to scan the classpath in search of classes
matching specified predicates, to load and create new instances of a class, and to find and invoke
methods. Some of these methods traverse class hierarchies to locate matching methods. Consult the
Javadoc for ReflectionSupport for further details.

o See also: Field and Method Search Semantics

Modifier Support

ModifierSupport provides static utility methods for working with member and class modifiers — for
example, to determine if a member is declared as public, private, abstract, static, etc. Consult the
Javadoc for ModifierSupport for further details.

Conversion Support

ConversionSupport (in the org.junit.platform.commons.support.conversion package) provides support
for converting from strings to primitive types and their corresponding wrapper types, date and
time types from the java.time package, and some additional common Java types such as File,
BigDecimal, BigInteger, Currency, Locale, URI, URL, UUID, etc. Consult the Javadoc for ConversionSupport
for further details.

Field and Method Search Semantics

Various methods in AnnotationSupport and ReflectionSupport use search algorithms that traverse
type hierarchies to locate matching fields and methods - for example,
AnnotationSupport.findAnnotatedFields(::+), ReflectionSupport.findMethods(: ), etc.

As of JUnit 5.11 (JUnit Platform 1.11), field and method search algorithms adhere to standard Java
semantics regarding whether a given field or method is visible or overridden according to the rules
of the Java language.

Prior to JUnit 5.11, the field and method search algorithms applied what we now refer to as "legacy
semantics". Legacy semantics consider fields and methods to be hidden, shadowed, or superseded by
fields and methods in super types (superclasses or interfaces) based solely on the field’s name or
the method’s signature, disregarding the actual Java language semantics for visibility and the rules
that determine if one method overrides another method.

Although the JUnit team recommends the use of the standard search semantics, developers may
optionally revert to the legacy semantics via the
junit.platform.reflection.search.uselegacySemantics JVM system property.

For example, to enable legacy search semantics for fields and methods, you can start your JVM with
the following system property.

-Djunit.platform.reflection.search.uselegacySemantics=true

183


attachment$api//org.junit.platform.commons/org/junit/platform/commons/support/ReflectionSupport.html
attachment$api//org.junit.platform.commons/org/junit/platform/commons/support/ModifierSupport.html
attachment$api//org.junit.platform.commons/org/junit/platform/commons/support/conversion/ConversionSupport.html

Due to the low-level nature of the feature, the
junit.platform.reflection.search.uselLegacySemantics flag can only be set via a
JVM system property. It cannot be set via a configuration parameter.

Relative Execution Order of User Code and Extensions

When executing a test class that contains one or more test methods, a number of extension
callbacks are called in addition to the user-supplied test and lifecycle methods.

e See also: Test Execution Order

User and Extension Code

The following diagram illustrates the relative order of user-supplied code and extension code. User-
supplied test and lifecycle methods are shown in orange, with callback code implemented by
extensions shown in blue. The grey box denotes the execution of a single test method and will be
repeated for every test method in the test class.

184


running-tests/configuration-parameters.pdf

BeforeAllCallback (1)

oBeforeAll (2)
LifecycleMethodExecutionExceptionHandler
#handleBeforeAllMethodExecutionException (3)

BeforeContainerTemplateInvocationCallback (4)
BeforeEachCallback (5)

aBeforeEach (6)
LifecycleMethodExecutionExceptionHandler
#thandleBeforeEachMethodExecutionException (7)

BeforeTestExecutionCallback (8)

aTest (9)

TestExecutionExceptionHandler (10)
AfterTestExecutionCallback (11)

oAfterEach (12)

LifecycleMethodExecutionExceptionHandler
#handleAfterEachMethodExecutionException (13)

AfterEachCallback (14)
AfterContainerTemplateInvocationCallback (15)

aAfterAll (16)

LifecycleMethodExecutionExceptionHandler
#handleAfterAllMethodExecutionException (17)

AfterAllCallback (18)

Extension code User code

User code and extension code
The following table further explains the sixteen steps in the User code and extension code diagram.
1. interface org.junit.jupiter.api.extension.BeforeAllCallback

extension code executed before all tests of the container are executed

2. annotation org.junit.jupiter.api.BeforeAll
user code executed before all tests of the container are executed

3. interface org.junit.jupiter.api.extension.LifecycleMethodExecutionExceptionHandler
#handleBeforeAllMethodExecutionException
extension code for handling exceptions thrown from @BeforeAll methods

185



4. interface org.junit.jupiter.api.extension.BeforeClassTemplateInvocationCallback
extension code executed before each class template invocation is executed (only applicable if
the test class is a class template)

5. interface org.junit.jupiter.api.extension.BeforeEachCallback
extension code executed before each test is executed

6. annotation org.junit.jupiter.api.BeforeEach
user code executed before each test is executed

7. interface org.junit.jupiter.api.extension.LifecycleMethodExecutionExceptionHandler
#handleBeforeEachMethodExecutionException
extension code for handling exceptions thrown from @BeforeEach methods

8. interface org.junit.jupiter.api.extension.BeforeTestExecutionCallback
extension code executed immediately before a test is executed

9. annotation org.junit.jupiter.api.Test
user code of the actual test method

10. interface org.junit.jupiter.api.extension.TestExecutionExceptionHandler
extension code for handling exceptions thrown during a test

11. interface org.junit.jupiter.api.extension.AfterTestExecutionCallback
extension code executed immediately after test execution and its corresponding exception
handlers

12. annotation org.junit.jupiter.api.AfterEach
user code executed after each test is executed

13. interface org.junit.jupiter.api.extension.LifecycleMethodExecutionExceptionHandler
#handleAfterEachMethodExecutionException
extension code for handling exceptions thrown from @AfterEach methods

14. interface org.junit.jupiter.api.extension.AfterEachCallback
extension code executed after each test is executed

15. interface org.junit.jupiter.api.extension.AfterClassTemplateInvocationCallback
extension code executed after each class template invocation is executed (only applicable if the
test class is a class template)

16. annotation org.junit.jupiter.api.AfterAll
user code executed after all tests of the container are executed

17. interface org.junit.jupiter.api.extension.LifecycleMethodExecutionExceptionHandler
#handleAfterAllMethodExecutionException
extension code for handling exceptions thrown from @AfterAll methods

18. interface org.junit.jupiter.api.extension.AfterAllCallback

extension code executed after all tests of the container are executed

In the simplest case only the actual test method will be executed (step 9); all other steps are optional
depending on the presence of user code or extension support for the corresponding lifecycle
callback. For further details on the various lifecycle callbacks please consult the respective Javadoc
for each annotation and extension.

All invocations of user code methods in the above table can additionally be intercepted by

186



implementing InvocationInterceptor.

Wrapping Behavior of Callbacks

JUnit Jupiter always guarantees wrapping behavior for multiple registered extensions that
implement lifecycle callbacks such as BeforeAllCallback, AfterAllCallback,
BeforeClassTemplateInvocationCallback, AfterClassTemplateInvocationCallback, BeforeEachCallback,
AfterEachCallback, BeforeTestExecutionCallback, and AfterTestExecutionCallback.

That means that, given two extensions Extension1 and Extension2 with Extension1 registered before
Extension2, any "before" callbacks implemented by Extensionl are guaranteed to execute before
any "before" callbacks implemented by Extension2. Similarly, given the two same two extensions
registered in the same order, any "after" callbacks implemented by Extensionl are guaranteed to
execute after any "after” callbacks implemented by Extension2. Extension1 is therefore said to wrap
Extension2.

JUnit Jupiter also guarantees wrapping behavior within class and interface hierarchies for user-
supplied lifecycle methods (see Definitions).

» @BeforeAll methods are inherited from superclasses as long as they are not overridden.
Furthermore, @BeforeAll methods from superclasses will be executed before @BeforeAll
methods in subclasses.

o Similarly, @BeforeAll methods declared in an interface are inherited as long as they are not
overridden, and @BeforeAll methods from an interface will be executed before @BeforeAll
methods in the class that implements the interface.

* @AfterAll methods are inherited from superclasses as long as they are not overridden.
Furthermore, @AfterAll methods from superclasses will be executed after @AfterAll methods in
subclasses.

o Similarly, @AfterAll methods declared in an interface are inherited as long as they are not
overridden, and @AfterAll methods from an interface will be executed after @AfterAll
methods in the class that implements the interface.

* @BeforeEach methods are inherited from superclasses as long as they are not overridden.
Furthermore, @BeforeEach methods from superclasses will be executed before @BeforeEach
methods in subclasses.

o Similarly, @BeforeEach methods declared as interface default methods are inherited as long
as they are not overridden, and @BeforeEach default methods will be executed before
@BeforeEach methods in the class that implements the interface.

» @AfterEach methods are inherited from superclasses as long as they are not overridden.
Furthermore, @AfterEach methods from superclasses will be executed after @AfterEach methods
in subclasses.

o Similarly, @AfterEach methods declared as interface default methods are inherited as long as
they are not overridden, and @AfterEach default methods will be executed after @AfterEach
methods in the class that implements the interface.

The following examples demonstrate this behavior. Please note that the examples do not actually
do anything realistic. Instead, they mimic common scenarios for testing interactions with the

187



database. All methods imported statically from the Logger class log contextual information in order
to help us better understand the execution order of user-supplied callback methods and callback
methods in extensions.

Extensionl

import static example.callbacks.lLogger.afterEachCallback;
import static example.callbacks.lLogger.beforeEachCallback;

import org.junit.jupiter.api.extension.AfterEachCallback;
import org.junit.jupiter.api.extension.BeforeEachCallback;
import org.junit.jupiter.api.extension.ExtensionContext;

public class Extensionl implements BeforeEachCallback, AfterEachCallback {

@0verride

public void beforeEach(ExtensionContext context) {
beforekachCallback(this);

}

@0verride

public void afterEach(ExtensionContext context) {
afterEachCallback(this);

}

Extension2

import static example.callbacks.lLogger.afterEachCallback;
import static example.callbacks.Logger.beforeEachCallback;

import org.junit.jupiter.api.extension.AfterEachCallback;
import org.junit.jupiter.api.extension.BeforeEachCallback;
import org.junit.jupiter.api.extension.ExtensionContext;

public class Extension2 implements BeforeEachCallback, AfterEachCallback {

@0verride

public void beforeEach(ExtensionContext context) {
beforeEachCallback(this);

}

@0verride
public void afterEach(ExtensionContext context) {
afterEachCallback(this);

}

188



AbstractDatabaseTests

import static example.callbacks.logger.afterAllMethod;

import static example.callbacks.lLogger.afterEachMethod;
import static example.callbacks.Logger.beforeAllMethod;
import static example.callbacks.Logger.beforeEachMethod;

import org.junit.jupiter.api.AfterAll;

import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.BeforeEach;

/**

* Abstract base class for tests that use the database.
*/

abstract class AbstractDatabaseTests {

@BeforeAll
static void createDatabase() {
beforeAllMethod(AbstractDatabaseTests.class.getSimpleName() +
.createDatabase()");

}

@BeforeEach
void connectToDatabase() {
beforeEachMethod(AbstractDatabaseTests.class.getSimpleName() +
.connectToDatabase()");

}

@AfterEach
void disconnectFromDatabase() {
afterEachMethod(AbstractDatabaseTests.class.getSimpleName() +
.disconnectFromDatabase()");

}

EAfterAll
static void destroyDatabase() {
afterAl1lMethod(AbstractDatabaseTests.class.getSimpleName() +
.destroyDatabase()");
}

DatabaseTestsDemo

import static example.callbacks.lLogger.afterEachMethod;
import static example.callbacks.lLogger.beforeAllMethod;
import static example.callbacks.Logger.beforeEachMethod;
import static example.callbacks.Logger.testMethod;

189



import org.junit.jupiter.api.AfterAll;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeAll;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;

/**

* Extension of {@link AbstractDatabaseTests} that inserts test data
* into the database (after the database connection has been opened)
* and deletes test data (before the database connection is closed).
*/

@ExtendWith({ Extensionl.class, Extension2.class })

class DatabaseTestsDemo extends AbstractDatabaseTests {

@BeforeAll

static void beforeAll() {
beforeAl1lMethod(DatabaseTestsDemo.class.getSimpleName() + ".beforeAll()");

}

@BeforeEach
void insertTestDataIntoDatabase() {
beforeEachMethod(getClass().getSimpleName() +
".insertTestDatalntoDatabase()");
}

@Test
void testDatabaseFunctionality() {

testMethod(getClass().getSimpleName() + ".testDatabaseFunctionality()");
}

@AfterEach
void deleteTestDataFromDatabase() {

afterEachMethod(getClass().getSimpleName() + ".deleteTestDataFromDatabase()");
}

EAfterAll

static void afterAl1() {
beforeAl1lMethod(DatabaseTestsDemo.class.getSimpleName() + ".afterAl1()");

Iy

When the DatabaseTestsDemo test class is executed, the following is logged.

@BeforeAll AbstractDatabaseTests.createDatabase()
@BeforeAll DatabaseTestsDemo.beforeAll()
Extension1.beforeEach()
Extension2.beforeEach()
@BeforeEach AbstractDatabaseTests.connectToDatabase()

190



@BeforeEach DatabaseTestsDemo.insertTestDatalntoDatabase()
@Test DatabaseTestsDemo.testDatabaseFunctionality()
@AfterEach DatabaseTestsDemo.deleteTestDataFromDatabase()
@AfterEach AbstractDatabaseTests.disconnectFromDatabase()
Extension2.afterEach()
Extensionl.afterEach()
@BeforeAll DatabaseTestsDemo.afterAll()
@AfterAll AbstractDatabaseTests.destroyDatabase()

The following sequence diagram helps to shed further light on what actually goes on within the
JupiterTestEngine when the DatabaseTestsDemo test class is executed.

191



Platform JupiterEngine AbstractDatabaseTests DatabaseTestsDemo Extension1 Extension2

EexecutegDatabaseTgﬁts'Demo}

& @BeforeAll (static invocation)
createDatabase() (.
Ll

# @BeforeAll (static invocation)
beforeAll()

A 4

beforeEach()

A @ AfterAll {static invocation)

destroyDatabase() . !
Ll

Result

a

| >

beforeEach() .
i ] Ll
# @BeforeEach inherited from AbstractDatabaseTests

i connectToDatabase() o

i [l Ll

A @BeforeEach

i insertTestDatalntoDatabasei) .

] ] Ll

i @ Test

E Ieleatabas'eFunclionality(} o !

i T Ll

i # @AfterEach

deleteTestDataFromDatabase() n

N Ll

f # @AfterEach inherited from AbstractDatabaseTests

| disconnectFromDatabase() n !

! T »

afterEach() [
H L
| afterEach() .

H Ll

A @ AfterAll {static invocation)

i afterAll() . !

1 1 Lgl

-

DatabaseTestsDemo

JUnit Jupiter does not guarantee the execution order of multiple lifecycle methods that are declared
within a single test class or test interface. It may at times appear that JUnit Jupiter invokes such
methods in alphabetical order. However, that is not precisely true. The ordering is analogous to the
ordering for @Test methods within a single test class.

Lifecycle methods that are declared within a single test class or test interface will

o be ordered using an algorithm that is deterministic but intentionally non-obvious.
This ensures that subsequent runs of a test suite execute lifecycle methods in the

192



same order, thereby allowing for repeatable builds.

In addition, JUnit Jupiter does not support wrapping behavior for multiple lifecycle methods
declared within a single test class or test interface.

The following example demonstrates this behavior. Specifically, the lifecycle method configuration
is broken due to the order in which the locally declared lifecycle methods are executed.

» Test data is inserted before the database connection has been opened, which results in a failure
to connect to the database.

» The database connection is closed before deleting the test data, which results in a failure to
connect to the database.

BrokenlLifecycleMethodConfigDemo

import static example.callbacks.lLogger.afterEachMethod;
import static example.callbacks.Logger.beforeEachMethod;
import static example.callbacks.lLogger.testMethod;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;

/**

* Example of "broken" lifecycle method configuration.
*

* <p>Test data is inserted before the database connection has been opened.
*

* <p>Database connection is closed before deleting test data.

*/
@ExtendWith({ Extension1.class, Extension2.class })

class BrokenLifecycleMethodConfigDemo {

@BeforeEach
void connectToDatabase() {
beforeEachMethod(getClass().getSimpleName() + ".connectToDatabase()");

}

@BeforeEach
void insertTestDataIntoDatabase() {
beforeEachMethod(getClass().getSimpleName() +
".insertTestDatalntoDatabase()");

}

@Test
void testDatabaseFunctionality() {
testMethod(getClass().getSimpleName() + ".testDatabaseFunctionality()");

}

193



@AfterEach
void deleteTestDataFromDatabase() {

afterEachMethod(getClass().getSimpleName() + ".deleteTestDataFromDatabase()");
}

@AfterEach
void disconnectFromDatabase() {
afterEachMethod(getClass().getSimpleName() + ".disconnectFromDatabase()");

}

When the BrokenLifecycleMethodConfigDemo test class is executed, the following is logged.

Extensionl.beforeEach()

Extension2.beforeEach()
@BeforeEach BrokenLifecycleMethodConfigDemo.insertTestDatalntoDatabase()
@BeforeEach BrokenLifecycleMethodConfigDemo.connectToDatabase()

@Test BrokenLifecycleMethodConfigDemo.testDatabaseFunctionality()
@AfterEach BrokenLifecycleMethodConfigDemo.disconnectFromDatabase()
@AfterEach BrokenLifecycleMethodConfigDemo.deleteTestDataFromDatabase()

Extension2.afterEach()
Extensionl1.afterEach()

The following sequence diagram helps to shed further light on what actually goes on within the
JupiterTestEngine when the BrokenLifecycleMethodConfigDemo test class is executed.

194



Platform JupiterEngine Extension1 Extension2 BrokenLifecycleMethodConfigDemo

lexecute(BrokenLifecycleMethodConfigDema)
! Ll

beforeEach() N

beforeEach ()

v

i
i
i A @ BeforeEach
i

insertTestDatalntoDatabase() .
[ L
/@ BeforeEach
connectToDatabase() !
0 L
# @ Test
i ' testDatabaseFunctignality() o
] I 1 ™
" @AfterEach
disconnectFromDatabase() > .
& @AfterEach
. deleteTestDataFromDiatabase() > |
afterEach() N
' L
afterEachi) |

BrokenlLifecycleMethodConfigDemo
Due to the aforementioned behavior, the JUnit Team recommends that developers

@ declare at most one of each type of lifecycle method (see Definitions) per test class
-
or test interface unless there are no dependencies between such lifecycle methods.

195



Advanced Topics

JUnit Platform Reporting

The junit-platform-reporting artifact contains TestExecutionListener implementations that
generate XML test reports in two flavors: Open Test Reporting and legacy.

o The module also contains other TestExecutionListener implementations that can
be used to build custom reporting. See Using Listeners and Interceptors for details.

Output Directory

The JUnit Platform provides an OutputDirectoryCreator via EngineDiscoveryRequest and TestPlan to
registered test engines and listeners, respectively. Its root directory can be configured via the
following configuration parameter:

junit.platform.reporting.output.dir=<path>

Configure the output directory for reporting. By default, build is used if a Gradle build script is
found, and target if a Maven POM is found; otherwise, the current working directory is used.

To create a unique output directory per test run, you can use the {uniqueNumber} placeholder in the
path. For example, reports/junit-{uniqueNumber} will create directories like reports/junit-
8803697269315188212. This can be useful when using Gradle’s or Maven’s parallel execution
capabilities which create multiple JVM forks that run concurrently.

Open Test Reporting

OpenTestReportGeneratinglistener writes an XML report for the entire execution in the event-based
format specified by Open Test Reporting which supports all features of the JUnit Platform such as
hierarchical test structures, display names, tags, etc.

The listener is auto-registered and can be configured via the following configuration parameters:

junit.platform.reporting.open.xml.enabled=true|false

Enable/disable writing the report; defaults to false.

junit.platform.reporting.open.xml.git.enabled=true|false

Enable/disable including information about the Git repository (see Git extension schema of
open-test-reporting); defaults to false.

If enabled, the listener creates an XML report file named open-test-report.xml in the configured
output directory.

If output capturing is enabled, the captured output written to System.out and System.err will be
included in the report as well.

(f') The Open Test Reporting CLI Tool can be used to convert from the event-based
w

196


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/OutputDirectoryCreator.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/EngineDiscoveryRequest.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestPlan.html
attachment$api//org.junit.platform.reporting/org/junit/platform/reporting/open/xml/OpenTestReportGeneratingListener.html
https://github.com/ota4j-team/open-test-reporting
https://github.com/ota4j-team/open-test-reporting#git
https://github.com/ota4j-team/open-test-reporting#cli-tool-for-validation-and-format-conversion

format to the hierarchical format which is more human-readable.

Gradle

For Gradle, writing Open Test Reporting compatible XML reports can be enabled and configured via
system properties. The following samples configure its output directory to be the same directory
Gradle uses for its own XML reports. A CommandLineArgumentProvider is used to keep the tasks
relocatable across different machines which is important when using Gradle’s Build Cache.

Groovy DSL

dependencies {
testRuntimeOnly("org.junit.platform:junit-platform-reporting:1.14.1")

}

tasks.withType(Test).configureEach {
def outputDir = reports.junitXml.outputlLocation
jvmArgumentProviders << ({

[

“-Djunit.platform.reporting.open.xml.enabled=true",

n

Djunit.platform.reporting.output.dir=§{outputDir.get().asFile.absolutePath}"
]

} as CommandLineArgumentProvider)

Kotlin DSL

dependencies {
testRuntimeOnly("org.junit.platform:junit-platform-reporting:1.14.1")

}
tasks.withType<Test>().configureEach {
val outputDir = reports.junitXml.outputLocation
jvmArgumentProviders += CommandLineArgumentProvider {
listOf(
"-Djunit.platform.reporting.open.xml.enabled=true",

Djunit.platform.reporting.output.dir=${outputDir.get().asFile.absolutePath}"
)
}

Maven

For Maven Surefire/Failsafe, you can enable Open Test Reporting output and configure the resulting
XML files to be written to the same directory Surefire/Failsafe uses for its own XML reports as
follows:

<project>
l-- .. =

197



<dependencies>
<dependency>
<groupId>org.junit.platform</groupld>
<artifactId>junit-platform-reporting</artifactIld>
<version>1.14.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.3</version>
<configuration>
<properties>
<configurationParameters>
junit.platform.reporting.open.xml.enabled = true
junit.platform.reporting.output.dir = target/surefire-
reports
</configurationParameters>
</properties>
</configuration>
</plugin>
</plugins>
</build>
EEEE
</project>

Console Launcher
When using the Console Launcher, you can enable Open Test Reporting output by setting the

configuration parameters via --config:

$ java -jar junit-platform-console-standalone-1.14.7.jar <OPTIONS> \
--config=junit.platform.reporting.open.xml.enabled=true \
--config=junit.platform.reporting.output.dir=reports

Configuration parameters can also be set in a custom properties file supplied as a classpath
resource via the --config-resource option:

$ java -jar junit-platform-console-standalone-1.14.1.jar <OPTIONS> \
--config-resource=confiquration.properties

Legacy XML format

LegacyXmlReportGeneratinglistener generates a separate XML report for each root in the TestPlan.
Note that the generated XML format is compatible with the de facto standard for JUnit 4 based test

198


attachment$api//org.junit.platform.reporting/org/junit/platform/reporting/legacy/xml/LegacyXmlReportGeneratingListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestPlan.html

reports that was made popular by the Ant build system.

The LegacyXmlReportGeneratinglListener is used by the Console Launcher as well.

JUnit Platform Suite Engine

The JUnit Platform supports the declarative definition and execution of suites of tests from any test
engine using the JUnit Platform.

Setup

In addition to the junit-platform-suite-api and junit-platform-suite-engine artifacts, you need at
least one other test engine and its dependencies on the classpath. See Dependency Metadata for
details regarding group IDs, artifact IDs, and versions.

Required Dependencies

* junit-platform-suite-api in test scope: artifact containing annotations needed to configure a
test suite

* junit-platform-suite-engine in test runtime scope: implementation of the TestEngine API for
declarative test suites

Both of the required dependencies are aggregated in the junit-platform-suite
artifact which can be declared in test scope instead of declaring explicit
dependencies on junit-platform-suite-api and junit-platform-suite-engine.

Transitive Dependencies

* junit-platform-suite-commons in test scope
* junit-platform-Tlauncher in test scope

* junit-platform-engine in test scope

* junit-platform-commons in test scope

* opentest4j in test scope

@Suite Example

By annotating a class with @Suite it is marked as a test suite on the JUnit Platform. As seen in the
following example, selector and filter annotations can then be used to control the contents of the
suite.

import org.junit.platform.suite.api.IncludeClassNamePatterns;
import org.junit.platform.suite.api.SelectPackages;

import org.junit.platform.suite.api.Suite;

import org.junit.platform.suite.api.SuiteDisplayName;

@Suite

199



@SuiteDisplayName("JUnit Platform Suite Demo")
@SelectPackages("example")
@IncludeClassNamePatterns(".*Tests")

class SuiteDemo {

}

Additional Configuration Options

o There are numerous configuration options for discovering and filtering tests in a
test suite. Please consult the Javadoc of the org.junit.platform.suite.api package
for a full list of supported annotations and further details.

@BeforeSuite and @AfterSuite

@BeforeSuite and @AfterSuite annotations can be used on methods inside a @Suite-annotated class.
They will be executed respectively before and after all tests of the test suite.

@Suite
@SelectPackages("example")
class BeforeAndAfterSuiteDemo {

@BeforeSuite
static void beforeSuite() {
// executes before the test suite

}

@AfterSuite
static void afterSuite() {
// executes after the test suite

}

JUnit Platform Test Kit

The junit-platform-testkit artifact provides support for executing a test plan on the JUnit Platform
and then verifying the expected results. As of JUnit Platform 1.14.1, this support is limited to the
execution of a single TestEngine (see Engine Test Kit).

Engine Test Kit

The org.junit.platform.testkit.engine package provides support for discovering and executing a
TestPlan for a given TestEngine running on the JUnit Platform and then accessing the results via
convenient result objects. For execution, a fluent API may be used to verify the expected execution
events were received. The key entry point into this API is the EngineTestKit which provides static
factory methods named engine(), discover(), and execute(). It is recommended that you select one
of the engine() variants to benefit from the fluent API for building a LauncherDiscoveryRequest.

200


attachment$api//org.junit.platform.suite.api/org/junit/platform/suite/api/package-summary.html
attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/package-summary.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestPlan.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/TestEngine.html
attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/EngineTestKit.html

If you prefer to use the LauncherDiscoveryRequestBuilder from the Launcher API to
o build your LauncherDiscoveryRequest, you must use one of the discover() or
execute() variants in EngineTestKit

The following test class written using JUnit Jupiter will be used in subsequent examples.

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assumptions.assumeTrue;

import example.util.Calculator;

import org.junit.jupiter.api.Disabled;

import org.junit.jupiter.api.MethodOrderer.OrderAnnotation;
import org.junit.jupiter.api.Order;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.TestMethodOrder;

@TestMethodOrder (OrderAnnotation.class)
public class ExampleTestCase {

private final Calculator calculator = new Calculator();

@Test
@Disabled("for demonstration purposes")
@0rder(1)
void skippedTest() {
// skipped ...

}

@Test
@0rder(2)
void succeedingTest() {
assertEquals(42, calculator.multiply(6, 7));
}

@Test

@0rder(3)

void abortedTest() {
assumeTrue("abc".contains("Z"), "abc does not contain Z");
// aborted ...

}

@Test

@0rder(4)

void failingTest() {
// The following throws an ArithmeticException: "/ by zero"
calculator.divide(1, 0);

201



For the sake of brevity, the following sections demonstrate how to test JUnit’'s own
JupiterTestEngine whose unique engine ID is "junit-jupiter". If you want to test your own
TestEngine implementation, you need to use its unique engine ID. Alternatively, you may test your
own TestEngine by supplying an instance of it to the EngineTestKit.engine(TestEngine) static factory
method.

Verifying Test Discovery

The following test demonstrates how to verify that a TestPlan was discovered as expected by the
JUnit Jupiter TestEngine.

import static java.util.Collections.emptylist;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass;

import example.ExampleTestCase;

import org.junit.jupiter.api.Test;
import org.junit.platform.testkit.engine.EngineDiscoveryResults;
import org.junit.platform.testkit.engine.EngineTestKit;

class EngineTestKitDiscoveryDemo {

@Test
void verifyJupiterDiscovery() {
EngineDiscoveryResults results = EngineTestKit.engine("junit-jupiter") @
.selectors(selectClass(ExampleTestCase.class)) @
.discover(); ®

assertEquals("JUnit Jupiter", results.getEngineDescriptor().getDisplayName());

assertEquals(emptylList(), results.getDiscoveryIssues()); ®

@ Select the JUnit Jupiter TestEngine.

@ Select the ExampleTestCase test class.

® Discover the TestPlan.

@ Assert engine root descriptor has expected display name.

® Assert no discovery issues were encountered.

Asserting Execution Statistics

One of the most common features of the Test Kit is the ability to assert statistics against events fired

202



during the execution of a TestPlan. The following tests demonstrate how to assert statistics for
containers and tests in the JUnit Jupiter TestEngine. For details on what statistics are available,
consult the Javadoc for EventStatistics.

import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass;
import example.ExampleTestCase;

import org.junit.jupiter.api.Test;
import org.junit.platform.testkit.engine.EngineTestKit;

class EngineTestKitStatisticsDemo {

@Test
void verifyJupiterContainerStats() {
EngineTestKit
.engine("junit-jupiter") @
.selectors(selectClass(ExampleTestCase.class)) @
.execute() @
.containerEvents() @
.assertStatistics(stats -> stats.started(2).succeeded(2)); ®
}
@Test
void verifyJupiterTestStats() {
EngineTestKit
.engine("junit-jupiter") @
.selectors(selectClass(ExampleTestCase.class)) @
.execute() ®
.testEvents() ®
.assertStatistics(stats ->
stats.skipped(1).started(3).succeeded(1).aborted(1).failed(1)); @
}

@ Select the JUnit Jupiter TestEngine.
@ Select the ExampleTestCase test class.
® Execute the TestPlan.

@ Filter by container events.

® Assert statistics for container events.
® Filter by test events.

@ Assert statistics for test events.
In the verifyJupiterContainerStats() test method, the counts for the started and

o succeeded statistics are 2 since the JupiterTestEngine and the ExampleTestCase class
are both considered containers.

203


attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/EventStatistics.html

Asserting Events

If you find that asserting statistics alone is insufficient for verifying the expected behavior of test
execution, you can work directly with the recorded Event elements and perform assertions against
them.

For example, if you want to verify the reason that the skippedTest() method in ExampleTestCase was
skipped, you can do that as follows.

The assertThatEvents() method in the following example is a shortcut for
org.assertj.core.api.Assertions.assertThat(events.list()) from the Assert]
(f) assertion library.

For details on what conditions are available for use with Assert] assertions against
events, consult the Javadoc for EventConditions.

import static org.junit.platform.engine.discovery.DiscoverySelectors.selectMethod;
import static org.junit.platform.testkit.engine.EventConditions.event;
import static org.junit.platform.testkit.engine.EventConditions.skippedWithReason;
import static org.junit.platform.testkit.engine.EventConditions.test;

import example.ExampleTestCase;

import org.junit.jupiter.api.Test;
import org.junit.platform.testkit.engine.EngineTestKit;
import org.junit.platform.testkit.engine.Events;

class EngineTestKitSkippedMethodDemo {

@Test
void verifyJupiterMethodWasSkipped() {
String methodName = "skippedTest";

Events testEvents = EngineTestKit ®
.engine("junit-jupiter") @
.selectors(selectMethod(ExampleTestCase.class, methodName)) @
.execute() ®
.testEvents(); @

testEvents.assertStatistics(stats -> stats.skipped(1)); ®
testEvents.assertThatEvents() @

.haveExactly(1, event(test(methodName),
skippedWithReason("for demonstration purposes")));

@ Select the JUnit Jupiter TestEngine.

204


attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/Event.html
https://assertj.github.io/doc/
attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/EventConditions.html

@ Select the skippedTest() method in the ExampleTestCase test class.
® Execute the TestPlan.

@ Filter by test events.

® Save the test Events to a local variable.

® Optionally assert the expected statistics.

@ Assert that the recorded test events contain exactly one skipped test named skippedTest with
“for demonstration purposes" as the reason.

If you want to verify the type of exception thrown from the failingTest() method in
ExampleTest(ase, you can do that as follows.

For details on what conditions are available for use with Assert] assertions against
@ events and execution results, consult the Javadoc for EventConditions and
w .
TestExecutionResultConditions, respectively.

import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass;
import static org.junit.platform.testkit.engine.EventConditions.event;

import static org.junit.platform.testkit.engine.EventConditions.finishedWithFailure;
import static org.junit.platform.testkit.engine.EventConditions.test;

import static org.junit.platform.testkit.engine.TestExecutionResultConditions
.instance0f;

import static org.junit.platform.testkit.engine.TestExecutionResultConditions.message;

import example.ExampleTestCase;

import org.junit.jupiter.api.Test;
import org.junit.platform.testkit.engine.EngineTestKit;

class EngineTestKitFailedMethodDemo {

@Test
void verifyJupiterMethodFailed() {
EngineTestKit.engine("junit-jupiter") @
.selectors(selectClass(ExampleTestCase.class)) @
.execute() ®
.testEvents() @
.assertThatEvents().haveExactly(1, ®
event(test("failingTest"),
finishedWithFailure(
instanceOf (ArithmeticException.class), message(it -> it
.endsWith("by zero")))));
}

@ Select the JUnit Jupiter TestEngine.

205


attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/EventConditions.html
attachment$api//org.junit.platform.testkit/org/junit/platform/testkit/engine/TestExecutionResultConditions.html

@ Select the ExampleTestCase test class.
® Execute the TestPlan.
@ Filter by test events.

® Assert that the recorded test events contain exactly one failing test named failingTest with an
exception of type ArithmeticException and an error message that ends with "/ by zero".

Although typically unnecessary, there are times when you need to verify all of the events fired
during the execution of a TestPlan. The following test demonstrates how to achieve this via the
assertEventsMatchExactly() method in the EngineTestKit APL

Since assertEventsMatchExactly() matches conditions exactly in the order in which
the events were fired, ExampleTestCase has been annotated with
(r) @TestMethodOrder (OrderAnnotation.class) and each test method has been
- annotated with @0rder(::+). This allows us to enforce the order in which the test
methods are executed, which in turn allows our verifyAllJupiterEvents() test to
be reliable.

If you want to do a partial match with or without ordering requirements, you can use the methods
assertEventsMatchLooselyInOrder() and assertEventsMatchLoosely(), respectively.

import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass;
import static org.junit.platform.testkit.engine.EventConditions.abortedWithReason;
import static org.junit.platform.testkit.engine.EventConditions.container;

import static org.junit.platform.testkit.engine.EventConditions.engine;

import static org.junit.platform.testkit.engine.EventConditions.event;

import static org.junit.platform.testkit.engine.EventConditions.finishedSuccessfully;
import static org.junit.platform.testkit.engine.EventConditions.finishedWithFailure;
import static org.junit.platform.testkit.engine.EventConditions.skippedWithReason;
import static org.junit.platform.testkit.engine.EventConditions.started;

import static org.junit.platform.testkit.engine.EventConditions.test;

import static org.junit.platform.testkit.engine.TestExecutionResultConditions
.instance0f;

import static org.junit.platform.testkit.engine.TestExecutionResultConditions.message;

import java.io.StringWriter;
import java.io.Writer;

import example.ExampleTestCase;
import org.junit.jupiter.api.Test;
import org.junit.platform.testkit.engine.EngineTestKit;
import org.opentest4j.TestAbortedException;
class EngineTestKitAllEventsDemo {
@Test

void verifyAllJupiterEvents() {
Writer writer = // create a java.io.Writer for debug output

206



EngineTestKit.engine("junit-jupiter") @

.selectors(selectClass(ExampleTestCase.class)) @

.execute() ®

.allEvents() @

.debug(writer) ®

.assertEventsMatchExactly( ®
event(engine(), started()),
event(container (ExampleTestCase.class), started()),
event(test("skippedTest"), skippedWithReason("for demonstration

purposes")),
event(test("succeedingTest"), started()),
event(test("succeedingTest"), finishedSuccessfully()),
event(test("abortedTest"), started()),
event(test("abortedTest"),
abortedWithReason(instance0f(TestAbortedException.class),
message(m -> m.contains("abc does not contain Z")))),
event(test("failingTest"), started()),
event(test("failingTest"), finishedWithFailure(
instanceOf (ArithmeticException.class), message(it -> it.endsWith
("by zero")))),

event(container (ExampleTestCase.class), finishedSuccessfully()),
event(engine(), finishedSuccessfully()));

@ Select the JUnit Jupiter TestEngine.
@ Select the ExampleTestCase test class.
® Execute the TestPlan.

@ Filter by all events.

® Print all events to the supplied writer for debugging purposes. Debug information can also be
written to an OutputStream such as System.out or System.err.

® Assert all events in exactly the order in which they were fired by the test engine.

The debug() invocation from the preceding example results in output similar to the following.

A1l Events:

Event [type = STARTED, testDescriptor = JupiterEngineDescriptor: [engine:junit-
jupiter], timestamp = 2018-12-14T712:45:14.082280Z, payload = null]

Event [type = STARTED, testDescriptor = ClassTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase], timestamp = 2018-12-14712:45:14.089339Z,
payload = null]

Event [type = SKIPPED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:skippedTest()], timestamp = 2018-12-
14712:45:14.094314Z, payload = 'for demonstration purposes']

Event [type = STARTED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:succeedingTest()], timestamp = 2018-

207



12-14712:45:14.095182Z, payload = null]

Event [type = FINISHED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:succeedingTest()], timestamp = 2018-
12-14T712:45:14.1049227, payload = TestExecutionResult [status = SUCCESSFUL, throwable
= null]]

Event [type = STARTED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:abortedTest()], timestamp = 2018-12-
14712:45:14.106121Z, payload = null]

Event [type = FINISHED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:abortedTest()], timestamp = 2018-12-
14712:45:14.109956Z, payload = TestExecutionResult [status = ABORTED, throwable =
org.opentest4j.TestAbortedException: Assumption failed: abc does not contain Z]]

Event [type = STARTED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:failingTest()], timestamp = 2018-12-
14T12:45:14.110680Z, payload = null]

Event [type = FINISHED, testDescriptor = TestMethodTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase]/[method:failingTest()], timestamp = 2018-12-
14712:45:14.111217Z, payload = TestExecutionResult [status = FAILED, throwable =
java.lang.ArithmeticException: / by zero]]

Event [type = FINISHED, testDescriptor = ClassTestDescriptor: [engine:junit-
jupiter]/[class:example.ExampleTestCase], timestamp = 2018-12-14T712:45:14.113731Z,
payload = TestExecutionResult [status = SUCCESSFUL, throwable = null]]

Event [type = FINISHED, testDescriptor = JupiterEngineDescriptor: [engine:junit-
jupiter], timestamp = 2018-12-14T12:45:14.113806Z, payload = TestExecutionResult
[status = SUCCESSFUL, throwable = null]]

JUnit Platform Launcher API

One of the prominent goals of JUnit 5 is to make the interface between JUnit and its programmatic
clients — build tools and IDEs — more powerful and stable. The purpose is to decouple the internals
of discovering and executing tests from all the filtering and configuration that’s necessary from the
outside.

JUnit 5 introduces the concept of a Launcher that can be used to discover, filter, and execute tests.
Moreover, third party test libraries — like Spock, Cucumber, and FitNesse — can plug into the JUnit
Platform’s launching infrastructure by providing a custom TestEngine.

The launcher API is in the junit-platform-launcher module.

An example consumer of the launcher API is the ConsolelLauncher in the junit-platform-console
project.

Discovering Tests

Having test discovery as a dedicated feature of the platform itself frees IDEs and build tools from
most of the difficulties they had to go through to identify test classes and test methods in previous
versions of JUnit.

Usage Example:

208


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/package-summary.html
attachment$api//org.junit.platform.console/org/junit/platform/console/ConsoleLauncher.html
attachment$api//org.junit.platform.console/org/junit/platform/console/package-summary.html

import static org.junit.platform.engine.discovery.ClassNameFilter
.includeClassNamePatterns;

import static org.junit.platform.engine.discovery.DiscoverySelectors.selectClass;
import static org.junit.platform.engine.discovery.DiscoverySelectors.selectPackage;

import java.io.PrintWriter;
import java.nio.file.Path;
import java.nio.file.Paths;

import org.junit.platform.engine.FilterResult;

import org.junit.platform.engine.TestDescriptor;

import org.junit.platform.launcher.Launcher;

import org.junit.platform.launcher.LauncherDiscoveryListener;

import org.junit.platform.launcher.LauncherDiscoveryRequest;

import org.junit.platform.launcher.LauncherSession;

import org.junit.platform.launcher.LauncherSessionListener;

import org.junit.platform.launcher.PostDiscoveryFilter;

import org.junit.platform.launcher.TestExecutionlListener;

import org.junit.platform.launcher.TestPlan;

import org.junit.platform.launcher.core.LauncherConfig;

import org.junit.platform.launcher.core.LauncherDiscoveryRequestBuilder;
import org.junit.platform.launcher.core.LauncherFactory;

import org.junit.platform.launcher.listeners.SummaryGeneratinglListener;
import org.junit.platform.launcher.listeners.TestExecutionSummary;
import org.junit.platform.reporting.legacy.xml.LegacyXmlReportGeneratingListener;

LauncherDiscoveryRequest request = LauncherDiscoveryRequestBuilder.request()
.selectors(
selectPackage("com.example.mytests"),
select(lass(MyTestClass.class)

)
filters(
includeClassNamePatterns(".*Tests")

)
.build();

try (LauncherSession session = LauncherFactory.openSession()) {
TestPlan testPlan = session.getlLauncher().discover(request);

// ... discover additional test plans or execute tests

You can select classes, methods, and all classes in a package or even search for all tests in the class-
path or module-path. Discovery takes place across all participating test engines.

The resulting TestPlan is a hierarchical (and read-only) description of all engines, classes, and test
methods that fit the LauncherDiscoveryRequest. The client can traverse the tree, retrieve details
about a node, and get a link to the original source (like class, method, or file position). Every node in

209



the test plan has a unique ID that can be used to invoke a particular test or group of tests.

Clients can register one or more LauncherDiscoverylistener implementations via the
LauncherDiscoveryRequestBuilder to gain insight into events that occur during test discovery. By
default, the builder registers an "abort on failure" listener that aborts test discovery after the first
discovery failure is encountered. The default LauncherDiscoverylListener can be changed via the
junit.platform.discovery.listener.default configuration parameter

Executing Tests

To execute tests, clients can use the same LauncherDiscoveryRequest as in the discovery phase or
create a new request. Test progress and reporting can be achieved by registering one or more
TestExecutionListener implementations with the Launcher as in the following example.

LauncherDiscoveryRequest request = LauncherDiscoveryRequestBuilder.request()
.selectors(
selectPackage("com.example.mytests"),
selectClass(MyTestClass.class)
)
filters(
includeClassNamePatterns(".*Tests")
)
.build();

SummaryGeneratingListener listener = new SummaryGeneratinglListener();

try (LauncherSession session = LauncherFactory.openSession()) {
Launcher launcher = session.getlauncher();
// Register a listener of your choice
launcher.registerTestExecutionListeners(listener);
// Discover tests and build a test plan
TestPlan testPlan = launcher.discover(request);
// Execute test plan
launcher.execute(testPlan);
// Alternatively, execute the request directly
launcher.execute(request);

TestExecutionSummary summary = listener.getSummary();
// Do something with the summary...

There is no return value for the execute() method, but you can use a TestExecutionListener to
aggregate the results. For examples see the SummaryGeneratinglListener,
LegacyXmlReportGeneratinglListener, and UniqueIdTrackinglListener.

All TestExecutionListener methods are called sequentially. Methods for start events

o are called in registration order while methods for finish events are called in
reverse order. Test case execution won’t start before all executionStarted calls

210


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherDiscoveryListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherDiscoveryRequestBuilder.html
running-tests/configuration-parameters.pdf
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/listeners/SummaryGeneratingListener.html
attachment$api//org.junit.platform.reporting/org/junit/platform/reporting/legacy/xml/LegacyXmlReportGeneratingListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/listeners/UniqueIdTrackingListener.html

have returned.

Registering a TestEngine

See the dedicated section on TestEngine registration for details.

Registering a PostDiscoveryFilter

In addition to specifying post-discovery filters as part of a LauncherDiscoveryRequest passed to the
Launcher API, PostDiscoveryFilter implementations will be discovered at runtime via Java’s
Serviceloader mechanism and automatically applied by the Launcher in addition to those that are
part of the request.

For example, an example.CustomTagFilter class implementing PostDiscoveryFilter and declared
within the /META-INF/services/org.junit.platform.launcher.PostDiscoveryFilter file is loaded and
applied automatically.

Registering a LauncherSessionListener

Registered implementations of LauncherSessionListener are notified when a LauncherSession 1is
opened (before a Launcher first discovers and executes tests) and closed (When no more tests will be
discovered or executed). They can be registered programmatically via the LauncherConfig that is
passed to the LauncherFactory, or they can be discovered at runtime via Java’s Serviceloader
mechanism and automatically registered with LauncherSession (unless automatic registration is
disabled.)

Tool Support

The following build tools and IDEs are known to provide full support for LauncherSession:

e Gradle 4.6 and later
* Maven Surefire/Failsafe 3.0.0-M6 and later

o Intelli] IDEA 2017.3 and later

Other tools might also work but have not been tested explicitly.

Example Usage

A LauncherSessionListener is well suited for implementing once-per-JVM setup/teardown behavior
since it’s called before the first and after the last test in a launcher session, respectively. The scope
of a launcher session depends on the used IDE or build tool but usually corresponds to the lifecycle
of the test JVM. A custom listener that starts an HTTP server before executing the first test and stops
it after the last test has been executed, could look like this:

src/test/java/example/session/GlobalSetup TeardownListener.java
package example.session;

import static java.net.InetAddress.getLoopbackAddress;

211


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherDiscoveryRequest.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/PostDiscoveryFilter.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherSessionListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherSession.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherConfig.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherFactory.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html

import java.io.IOException;

import java.io.UncheckedIOException;

import java.net.InetSocketAddress;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import com.sun.net.httpserver.HttpServer;

import org.junit.platform.engine.support.store.Namespace;

import org.junit.platform.engine.support.store.NamespacedHierarchicalStore;
import org.junit.platform.launcher.LauncherSession;

import org.junit.platform.launcher.LauncherSessionListener;

import org.junit.platform.launcher.TestExecutionListener;

import org.junit.platform.launcher.TestPlan;

public class GlobalSetupTeardownListener implements LauncherSessionListener {

@0verride
public void launcherSessionOpened(LauncherSession session) {
// Avoid setup for test discovery by delaying it until tests are about to be
executed
session.getlLauncher().registerTestExecutionListeners(new
TestExecutionListener() {
@0verride
public void testPlanExecutionStarted(TestPlan testPlan) {
NamespacedHierarchicalStore<Namespace> store = session.getStore(); @
store.getOrComputeIfAbsent(Namespace.GLOBAL, "httpServer", key -> { @
InetSocketAddress address = new InetSocketAddress
(getLoopbackAddress(), 0);
HttpServer server;
try {
server = HttpServer.create(address, 0);
}
catch (IOException e) {
throw new UncheckedIOException("Failed to start HTTP server",

e);

}

server.createContext("/test", exchange -> {
exchange.sendResponseHeaders(204, -1);
exchange.close();

b

ExecutorService executorService = Executors.newCachedThreadPool();

server.setExecutor(executorService);

server.start(); ®

return new CloseableHttpServer(server, executorService);

DE
}
1)
}

212



@ Get the store from the launcher session
@ Lazily create the HTTP server and put it into the store
® Start the HTTP server

It uses a wrapper class to ensure the server is stopped when the launcher session is closed:

src/test/java/example/session/CloseableHttpServer.java
package example.session;
import java.util.concurrent.ExecutorService;
import com.sun.net.httpserver.HttpServer;
public class CloseableHttpServer implements AutoCloseable {

private final HttpServer server;
private final ExecutorService executorService;

CloseableHttpServer (HttpServer server, ExecutorService executorService) {
this.server = server;
this.executorService = executorService;

public HttpServer getServer() {
return server;

}

@0verride

public void close() { @
server.stop(0); @
executorService.shutdownNow();

@M The close() method is called when the launcher session is closed

@ Stop the HTTP server

This sample uses the HTTP server implementation from the jdk.httpserver module that comes with
the JDK but would work similarly with any other server or resource. In order for the listener to be
picked up by JUnit Platform, you need to register it as a service by adding a resource file with the
following name and contents to your test runtime classpath (e.g. by adding the file to
src/test/resources):

213



src/test/resources/META-INF/services/org.junit.platform.launcher.LauncherSessionListener

example.session.GlobalSetupTeardownListener

You can now use the resource from your test:

src/test/java/example/session/HttpTests.java
package example.session;
import static org.junit.jupiter.api.Assertions.assertEquals;

import java.io.IOException;

import java.net.HttpURLConnection;
import java.net.URI;

import java.net.URL;

import com.sun.net.httpserver.HttpServer;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.extension.ExtendWith;

import org.junit.jupiter.api.extension.ExtensionContext;
import org.junit.jupiter.api.extension.ParameterContext;
import org.junit.jupiter.api.extension.ParameterResolver;

@ExtendWith(HttpServerParameterResolver.class)
class HttpTests {

@Test
void respondsWith204(HttpServer server) throws IOException {
String host = server.getAddress().getHostString(); @
int port = server.getAddress().getPort(); ®
URL url = URI.create("http://" + host + ":" + port + "/test").toURL();

HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("GET");
int responseCode = connection.getResponseCode(); @

assertEquals(204, responseCode); ®

}

class HttpServerParameterResolver implements ParameterResolver {
@0verride
public boolean supportsParameter(ParameterContext parameterContext,
ExtensionContext extensionContext) {
return HttpServer.class.equals(parameterContext.getParameter().getType());

}

@Override

214



public Object resolveParameter(ParameterContext parameterContext, ExtensionContext
extensionContext) {
return extensionContext
.getStore(ExtensionContext.Namespace.GLOBAL)
.get("httpServer", CloseableHttpServer.class) @®
.getServer();

@ Retrieve the HTTP server instance from the store

@ Get the host string directly from the injected HTTP server instance
® Get the port number directly from the injected HTTP server instance
@ Send a request to the server

® Check the status code of the response

Registering a LauncherInterceptor

In order to intercept the creation of instances of Launcher and LauncherSessionListener and calls to
the discover and execute methods of the former, clients can register custom implementations of
LauncherInterceptor via Java’s Serviceloader mechanism by setting the
junit.platform.launcher.interceptors.enabled configuration parameter to true.

Since interceptors are registered before the test run starts, the
junit.platform.launcher.interceptors.enabled configuration parameter can only be

o supplied as a JVM system property or via the JUnit Platform configuration file (see
Configuration Parameters for details). This configuration parameter cannot be
supplied in the LauncherDiscoveryRequest that is passed to the Launcher.

A typical use case is to create a custom interceptor to replace the ClassLoader used by the JUnit
Platform to load test classes and engine implementations.

import java.io.IOException;

import java.io.UncheckedIOException;
import java.net.URI;

import java.net.URL;

import java.net.URLClasslLoader;

import org.junit.platform.launcher.LauncherInterceptor;
public class CustomLauncherInterceptor implements LauncherInterceptor {
private final URLClassLoader customClasslLoader;
public CustomLauncherInterceptor() throws Exception {
ClassLoader parent = Thread.currentThread().getContextClassLoader();

customClassLoader = new URLClassLoader(new URL[] { URI.create("some.jar"
).toURL() }, parent);

215


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherSessionListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherInterceptor.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html

@0verride
public <T> T intercept(Invocation<T> invocation) {
Thread currentThread = Thread.currentThread();
ClassLoader originalClassLoader = currentThread.getContextClassLoader();
currentThread.setContextClassLoader (customClassLoader);
try {
return invocation.proceed();

}
finally {
currentThread.setContextClassLoader(originalClassLoader);
}
}
@0verride
public void close() {
try {
customClasslLoader.close();
}
catch (IOException e) {
throw new UncheckedIOException("Failed to close custom class loader", e);
}
}

Registering a LauncherDiscoveryListener

In addition to specifying discovery listeners as part of a LauncherDiscoveryRequest or registering
them programmatically via the Launcher API, custom LauncherDiscoverylListener implementations
can be discovered at runtime via Java’s Serviceloader mechanism and automatically registered
with the Launcher created via the LauncherFactory.

For example, an example.CustomLauncherDiscoverylListener class implementing
LauncherDiscoverylListener and declared within the /META-
INF/services/org.junit.platform.launcher.LauncherDiscoverylListener file is loaded and registered
automatically.

Registering a TestExecutionListener

In addition to the public Launcher API method for registering test execution listeners
programmatically, custom TestExecutionlListener implementations will be discovered at runtime
via Java’s ServicelLoader mechanism and automatically registered with the Launcher created via the
LauncherFactory.

For example, an example.CustomTestExecutionListener class implementing TestExecutionListener
and declared within the /META-INF/services/org.junit.platform.launcher.TestExecutionlListener file
is loaded and registered automatically.

216


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherDiscoveryRequest.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherFactory.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherFactory.html

Configuring a TestExecutionListener

When a TestExecutionlListener is registered programmatically via the Launcher API, the listener may
provide programmatic ways for it to be configured —for example, via its constructor, setter
methods, etc. However, when a TestExecutionlListener is registered automatically via Java’s
ServicelLoader mechanism (see Registering a TestExecutionListener), there is no way for the user to
directly configure the listener. In such cases, the author of a TestExecutionListener may choose to
make the listener configurable via configuration parameters. The listener can then access the
configuration parameters via the TestPlan supplied to the testPlanExecutionStarted(TestPlan) and
testPlanExecutionFinished(TestPlan) callback methods. See the UniqueldTrackinglListener for an
example.

Deactivating a TestExecutionListener

Sometimes it can be useful to run a test suite without certain execution listeners being active. For
example, you might have custom a TestExecutionListener that sends the test results to an external
system for reporting purposes, and while debugging you might not want these debug results to be
reported. To do this, provide a pattern for the junit.platform.execution.listeners.deactivate
configuration parameter to specify which execution listeners should be deactivated (i.e. not
registered) for the current test run.

Only listeners registered via the Serviceloader mechanism within the /META-
INF/services/org.junit.platform.launcher.TestExecutionlListener file can be
deactivated. In other words, any TestExecutionListener registered explicitly via the
LauncherDiscoveryRequest cannot be deactivated via the
junit.platform.execution.listeners.deactivate configuration parameter.

In addition, since execution listeners are registered before the test run starts, the
junit.platform.execution.listeners.deactivate configuration parameter can only
be supplied as a JVM system property or via the JUnit Platform configuration file
(see Configuration Parameters for details). This configuration parameter cannot be
supplied in the LauncherDiscoveryRequest that is passed to the Launcher.

Pattern Matching Syntax

Refer to Pattern Matching Syntax for details.

Configuring the Launcher

If you require fine-grained control over automatic detection and registration of test engines and
listeners, you may create an instance of LauncherConfig and supply that to the LauncherFactory.
Typically, an instance of LauncherConfig is created via the built-in fluent builder API, as
demonstrated in the following example.

LauncherConfig launcherConfig = LauncherConfig.builder()
.enableTestEngineAutoRegistration(false)
.enablelauncherSessionListenerAutoRegistration(false)
.enablelLauncherDiscoverylListenerAutoRegistration(false)

217


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/listeners/UniqueIdTrackingListener.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/LauncherDiscoveryRequest.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherConfig.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/core/LauncherFactory.html

.enablePostDiscoveryFilterAutoRegistration(false)
.enableTestExecutionListenerAutoRegistration(false)

.addTestEngines(new CustomTestEngine())

.addLauncherSessionListeners(new CustomLauncherSessionListener())
.addLauncherDiscoveryListeners(new CustomLauncherDiscoveryListener())
.addPostDiscoveryFilters(new CustomPostDiscoveryFilter())
.addTestExecutionListeners(new LegacyXmlReportGeneratinglListener(reportsDir, out))
.addTestExecutionListeners(new CustomTestExecutionListener())

.build();

LauncherDiscoveryRequest request = LauncherDiscoveryRequestBuilder.request()
.selectors(selectPackage("com.example.mytests"))
.build();

try (LauncherSession session = LauncherFactory.openSession(launcherConfig)) {
session.getLauncher().execute(request);

}

Dry-Run Mode

When running tests via the Launcher API, you can enable dry-run mode by setting the
junit.platform.execution.dryRun.enabled configuration parameter to true. In this mode, the
Launcher will not actually execute any tests but will notify registered TestExecutionListener
instances as if all tests had been skipped and their containers had been successful. This can be
useful to test changes in the configuration of a build or to verify a listener is called as expected
without having to wait for all tests to be executed.

Managing State Across Test Engines

When running tests on the JUnit Platform, multiple test engines may need to access shared
resources. Rather than initializing these resources multiple times, JUnit Platform provides
mechanisms to share state across test engines efficiently. Test engines can use the Platform’s
NamespacedHierarchicalStore API to lazily initialize and share resources, ensuring they are created
only once regardless of execution order. Any resource that is put into the store and implements
AutoCloseable will be closed automatically when the execution is finished.

(a . . . I
O The Jupiter engine allows read and write access to such resources via its Store APIL.
w

The following example demonstrates two custom test engines sharing a ServerSocket resource.
FirstCustomEngine attempts to retrieve an existing ServerSocket from the global store or creates a
new one if it doesn’t exist:

import static java.net.InetAddress.getlLoopbackAddress;
import static org.junit.platform.engine.TestExecutionResult.successful;

import java.io.IOException;

import java.io.UncheckedIOException;
import java.net.ServerSocket;

218


attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/Launcher.html
attachment$api//org.junit.platform.launcher/org/junit/platform/launcher/TestExecutionListener.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/support/store/NamespacedHierarchicalStore.html
attachment$api//org.junit.jupiter.api/org/junit/jupiter/api/extension/ExtensionContext.Store.html

import
import
import
import
import
import
import
import

/**

org

org

org

org

.junit.
org.
.junit.
org.
.junit.
org.
.junit.
org.

junit.
junit.
junit.

junit.

platform.
platform.
platform.
platform.
platform.
platform.
platform.
platform.

engine.
engine.
engine.
engine.
engine.
engine.
engine.
engine.

EngineDiscoveryRequest;

ExecutionRequest;

TestDescriptor;

TestEngine;

Uniqueld;
support.descriptor.EngineDescriptor;
support.store.Namespace;
support.store.NamespacedHierarchicalStore;

* First custom test engine implementation.

*/

public class FirstCustomEngine implements TestEngine {

public ServerSocket socket;

@0verride
public String getId() {
return "first-custom-test-engine";

}

@0verride
public TestDescriptor discover(EngineDiscoveryRequest discoveryRequest, Uniqueld

uniqueld) {

}

return new EngineDescriptor(uniqueld, "First Custom Test Engine");

@0verride
public void execute(ExecutionRequest request) {
request.getEngineExecutionListener()
.executionStarted(request.getRootTestDescriptor());

NamespacedHierarchicalStore<Namespace> store = request.getStore();
socket = store.getOrComputeIfAbsent(Namespace.GLOBAL, "serverSocket", key -> {

try {

return new ServerSocket(@, 50, getlLoopbackAddress());

}

catch (IOException e) {
throw new UncheckedIOException("Failed to start ServerSocket", e);

}

}, ServerSocket.class);

request.getEngineExecutionlListener()
.executionFinished(request.getRootTestDescriptor(), successful());

SecondCustomEngine follows the same pattern, ensuring that regardless whether it runs before or
after FirstCustomEngine, it will use the same socket instance:

219



/**

* Second custom test engine implementation.

*/

public class SecondCustomEngine implements TestEngine {

public ServerSocket socket;

@0verride
public String getId() {
return "second-custom-test-engine";

}

@0verride
public TestDescriptor discover(EngineDiscoveryRequest discoveryRequest, Uniqueld
uniqueld) {
return new EngineDescriptor(uniqueld, "Second Custom Test Engine");

}

@0verride
public void execute(ExecutionRequest request) {
request.getEngineExecutionlListener()
.executionStarted(request.getRootTestDescriptor());

NamespacedHierarchicalStore<Namespace> store = request.getStore();
socket = store.getOrComputelfAbsent(Namespace.GLOBAL, "serverSocket", key -> {

try {
return new ServerSocket(@, 50, getlLoopbackAddress());

}
catch (IOException e) {

throw new UncheckedIOException("Failed to start ServerSocket", e);

}

}, ServerSocket.class);

request.getEngineExecutionListener()
.executionFinished(request.getRootTestDescriptor(), successful());

In this case, the ServerSocket can be stored directly in the global store while
ensuring since it gets closed because it implements AutoCloseable. If you need to
@ use a type that does not do so, you can wrap it in a custom class that implements
et AutoCloseable and delegates to the original type. This is important to ensure that
the resource is closed properly when the test run is finished.

For illustration, the following test verifies that both engines are sharing the same ServerSocket
instance and that it’s closed after Launcher.execute() returns:

@Test

220



void runBothCustomEnginesTest() {
FirstCustomEngine firstCustomEngine = new FirstCustomEngine();
SecondCustomEngine secondCustomEngine = new SecondCustomEngine();

Launcher launcher = LauncherFactory.create(LauncherConfig.builder()
.addTestEngines(firstCustomEngine, secondCustomEngine)
.enableTestEngineAutoRegistration(false)

.build());

launcher.execute(request().build());

assertSame(firstCustomEngine.socket, secondCustomEngine.socket);
assertTrue(firstCustomEngine.socket.isClosed(), "socket should be closed");

By using the Platform’s NamespacedHierarchicalStore API with shared namespaces in this way, test
engines can coordinate resource creation and sharing without direct dependencies between them.

Alternatively, it’s possible to inject resources into test engines by registering a
LauncherSessionListener.

Test Engines

A TestEngine facilitates discovery and execution of tests for a particular programming model.

For example, JUnit provides a TestEngine that discovers and executes tests written using the JUnit
Jupiter programming model (see Writing Tests and Extension Model).

JUnit Test Engines
JUnit provides three TestEngine implementations.

* junit-jupiter-engine: The core of JUnit Jupiter.

* junit-vintage-engine: A thin layer on top of JUnit 4 to allow running vintage tests (based on
JUnit 3.8 and JUnit 4) with the JUnit Platform launcher infrastructure.

* junit-platform-suite-engine: Executes declarative suites of tests with the JUnit Platform
launcher infrastructure.

Custom Test Engines

You can contribute your own custom TestEngine by implementing the interfaces in the junit-
platform-engine module and registering your engine.

Every TestEngine must provide its own unique ID, discover tests from an EngineDiscoveryRequest,
and execute those tests according to an ExecutionRequest.

g The junit- unique ID prefix is reserved for TestEngines from the JUnit Team

The JUnit Platform Launcher enforces that only TestEngine implementations

221


attachment$api//org.junit.platform.engine/org/junit/platform/engine/support/store/NamespacedHierarchicalStore.html
attachment$api//org.junit.jupiter.engine/org/junit/jupiter/engine/package-summary.html
attachment$api//org.junit.vintage.engine/org/junit/vintage/engine/package-summary.html
attachment$api//org.junit.platform.suite.engine/org/junit/platform/suite/engine/package-summary.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/TestEngine.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/package-summary.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/package-summary.html

published by the JUnit Team may use the junit- prefix for their TestEngine IDs.

» If any third-party TestEngine claims to be junit-jupiter or junit-vintage, an
exception will be thrown, immediately halting execution of the JUnit Platform.

« If any third-party TestEngine uses the junit- prefix for its ID, a warning
message will be logged. Later releases of the JUnit Platform will throw an
exception for such violations.

In order to facilitate test discovery within IDEs and tools prior to launching the JUnit Platform,
TestEngine implementations are encouraged to make use of the @Testable annotation. For example,
the @Test and @TestFactory annotations in JUnit Jupiter are meta-annotated with @Testable. Consult
the Javadoc for @Testable for further details.

If your custom TestEngine needs to be configured, consider allowing users to supply configuration
via configuration parameters. Please note, however, that you are strongly encouraged to use a
unique prefix for all configuration parameters supported by your test engine. Doing so will ensure
that there are no conflicts between the names of your configuration parameters and those from
other test engines. In addition, since configuration parameters may be supplied as JVM system
properties, it is wise to avoid conflicts with the names of other system properties. For example,
JUnit Jupiter uses junit.jupiter. as a prefix of all of its supported configuration parameters.
Furthermore, as with the warning above regarding the junit- prefix for TestEngine IDs, you should
not use junit. as a prefix for the names of your own configuration parameters.

Although there is currently no official guide on how to implement a custom TestEngine, you can
consult the implementation of JUnit Test Engines or the implementation of third-party test engines
listed in the JUnit 5 wiki. You will also find various tutorials and blogs on the Internet that
demonstrate how to write a custom TestEngine.

HierarchicalTestEngine is a convenient abstract base implementation of the

o TestEngine SPI (used by the junit-jupiter-engine) that only requires implementors
to provide the logic for test discovery. It implements execution of TestDescriptors
that implement the Node interface, including support for parallel execution.

Registering a TestEngine
TestEngine registration is supported via Java’s ServicelLoader mechanism.

For example, the junit-jupiter-engine module registers its
org.junit.jupiter.engine.JupiterTestEngine in a file named org.junit.platform.engine.TestEngine
within the /META-INF/services folder in the junit-jupiter-engine JAR.

Requirements
The words "must", "must not", "required”, "shall", "shall not", "should", "should

o not", "recommended"”, "may", and "optional" in this section are to be interpreted as
described in RFC 2119.

222


attachment$api//org.junit.platform.commons/org/junit/platform/commons/annotation/Testable.html
https://github.com/junit-team/junit-framework/wiki/Third-party-Extensions#junit-platform-test-engines
attachment$api//org.junit.platform.engine/org/junit/platform/engine/support/hierarchical/HierarchicalTestEngine.html
attachment$api//org.junit.jupiter.engine/org/junit/jupiter/engine/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ServiceLoader.html
https://www.ietf.org/rfc/rfc2119.txt

Mandatory requirements

For interoperability with build tools and IDEs, TestEngine implementations must adhere to the
following requirements:

* The TestDescriptor returned from TestEngine.discover() must be the root of a tree of
TestDescriptor instances. This implies that there must not be any cycles between a node and its
descendants.

* A TestEngine must be able to discover UniqueldSelectors for any unique ID that it previously
generated and returned from TestEngine.discover(). This enables selecting a subset of tests to
execute or rerun.

e The executionSkipped, executionStarted, and executionFinished methods of the
EngineExecutionlListener passed to TestEngine.execute() must be called for every TestDescriptor
node in the tree returned from TestEngine.discover() at most once. Parent nodes must be
reported as started before their children and as finished after their children. If a node is
reported as skipped, there must not be any events reported for its descendants.

Enhanced compatibility

Adhering to the following requirements is optional but recommended for enhanced compatibility
with build tools and IDEs:

* Unless to indicate an empty discovery result, the TestDescriptor returned from
TestEngine.discover() should have children rather than being completely dynamic. This allows
tools to display the structure of the tests and to select a subset of tests to execute.

* When resolving UniqueIdSelectors, a TestEngine should only return TestDescriptor instances
with matching unique IDs including their ancestors but may return additional siblings or other
nodes that are required for the execution of the selected tests.

* TestEngines should support tagging tests and containers so that tag filters can be applied when
discovering tests.

Reporting Discovery Issues

Test engines should report discovery issues if they encounter any problems or potential
misconfigurations during test discovery. This is especially important if the issue could lead to tests
not being executed at all or only partially.

In order to report a DiscoveryIssue, a test engine should call the issueEncountered() method on the
EngineDiscoverylListener available via the EngineDiscoveryRequest passed to its discover() method.
Rather than passing the listener around, the DiscoveryIssueReporter interface should be used. It
also provides a way to create a Condition that reports a discovery issue if its check fails and may be
used as a Predicate or Consumer. Please refer to the implementations of the test engines provided by
JUnit for examples.

Moreover, Engine Test Kit provides a way to write tests for reported discovery issues.

223


attachment$api//org.junit.platform.engine/org/junit/platform/engine/DiscoveryIssue.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/EngineDiscoveryListener.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/EngineDiscoveryRequest.html
attachment$api//org.junit.platform.engine/org/junit/platform/engine/support/discovery/DiscoveryIssueReporter.html

API Evolution

One of the major goals of JUnit 5 is to improve maintainers' capabilities to evolve JUnit despite its
being used in many projects. With JUnit 4 a lot of stuff that was originally added as an internal
construct only got used by external extension writers and tool builders. That made changing JUnit 4
especially difficult and sometimes impossible.

That’s why JUnit 5 introduces a defined lifecycle for all publicly available interfaces, classes, and
methods.

API Version and Status

Every published artifact has a version number <major>.<minor>.<patch>, and all publicly available
interfaces, classes, and methods are annotated with @API from the @API Guardian project. The
annotation’s status attribute can be assigned one of the following values.

Status Description

INTERNAL Must not be used by any code other than JUnit itself. Might be removed
without prior notice.

DEPRECATED Should no longer be used; might disappear in the next minor release.

EXPERIMENTAL Intended for new, experimental features where we are looking for feedback.

Use this element with caution; it might be promoted to MAINTAINED or STABLE in
the future, but might also be removed without prior notice, even in a patch.

MAINTAINED Intended for features that will not be changed in a backwards- incompatible
way for at least the next minor release of the current major version. If
scheduled for removal, it will be demoted to DEPRECATED first.

STABLE Intended for features that will not be changed in a backwards- incompatible
way in the current major version (5.%).

If the @API annotation is present on a type, it is considered to be applicable for all public members
of that type as well. A member is allowed to declare a different status value of lower stability.

Experimental APIs

The following tables list which APIs are currently designated as experimental via @API(status =
EXPERIMENTAL). Caution should be taken when relying on such APIs.

Module org.junit.jupiter.params
Package org.junit.jupiter.params

Module org.junit.platform.engine

224


https://apiguardian-team.github.io/apiguardian/docs/current/api/
https://github.com/apiguardian-team/apiguardian

Package org.junit.platform.engine.support.descriptor

Deprecated APIs

The following tables list which APIs are currently designated as deprecated via EAPI(status =
DEPRECATED). You should avoid using deprecated APIs whenever possible, since such APIs will likely
be removed in an upcoming release.

Module org.junit.jupiter.api

Package org.junit.jupiter.api

Package org.junit.jupiter.api.condition

Package org.junit.jupiter.api.extension

Module org.junit.jupiter.params

Package org.junit.jupiter.params.provider

Package org.junit.jupiter.params.support

Module org.junit.platform.commons

Package org.junit.platform.commons.support

Package org.junit.platform.commons.support.scanning
Module org.junit.platform.engine

Package org.junit.platform.engine

Package org.junit.platform.engine.discovery

Package org.junit.platform.engine.reporting

Package org.junit.platform.engine.support.discovery
Package org.junit.platform.engine.support.filter
Package org.junit.platform.engine.support.hierarchical
Module org.junit.platform.launcher

Package org.junit.platform.launcher

Package org.junit.platform.launcher.core

225



Package org.junit.platform.launcher.listeners
Module org.junit.platform.runner

Package org.junit.platform.runner

Module org.junit.platform.suite.api
Package org.junit.platform.suite.api

Module org.junit.platform.suite.commons
Package org.junit.platform.suite.commons

Module org.junit.platform.testkit

Package org.junit.platform.testkit.engine

@API Tooling Support

The @API Guardian project plans to provide tooling support for publishers and consumers of APIs
annotated with @API. For example, the tooling support will likely provide a means to check if JUnit
APIs are being used in accordance with @API annotation declarations.

226


https://github.com/apiguardian-team/apiguardian
https://apiguardian-team.github.io/apiguardian/docs/current/api/

Release Notes

This document contains the change log for all JUnit 5 releases since 5.13 GA.

Please refer to the User Guide for comprehensive reference documentation for programmers
writing tests, extension authors, and engine authors as well as build tool and IDE vendors.

5.14.1
Date of Release: October 31, 2025

Scope: Bug fixes and enhancements since 5.14.0

For a complete list of all closed issues and pull requests for this release, consult the 5.14.1 milestone
page in the JUnit repository on GitHub.

JUnit Platform

No changes.

JUnit Jupiter

Bug Fixes

 Fix support for test methods with the same signature as a package-private methods declared in
super classes in different packages.

New Features and Improvements

* Improve error message when using @ParameterizedClass with field injection and not providing
enough arguments.

JUnit Vintage

No changes.

5.14.0

Date of Release: September 30, 2025
Scope:

* Bug fixes and enhancements since 5.13.x

* Deprecations along with new APIs to ease migration to JUnit 6

For a complete list of all closed issues and pull requests for this release, consult the 5.14.0-RC1 and
5.14.0 milestone pages in the JUnit repository on GitHub.

227


https://github.com/junit-team/junit-framework/milestone/111?closed=1
https://github.com/junit-team/junit-framework/milestone/108?closed=1
https://github.com/junit-team/junit-framework/milestone/109?closed=1

z Migration Guide

- Please refer to the wiki for guidance on upgrading to JUnit 5.14.
JUnit Platform
Bug Fixes

» The Launcher (specifically LauncherDiscoveryResult) now retains the original TestEngine
registration order after pruning test engines without tests, thereby ensuring reliable test
execution order of multiple test engines.

Deprecations and Breaking Changes

* Deprecate OutputDirectoryProvider interface in favor of the new OutputDirectoryCreator
interface to resolve a cyclic package dependency along with the following APIs (which all have
replacements working with QutputDirectoryCreator):

o EngineDiscoveryRequest.getOutputDirectoryProvider()

o ExecutionRequest.getOutputDirectoryProvider()

o LauncherDiscoveryRequestBuilder.outputDirectoryProvider(OutputDirectoryProvider)
o TestPlan.getOutputDirectoryProvider()

o EngineTestKit.Builder.outputDirectoryProvider(OutputDirectoryProvider)

* Deprecate org.junit.platform.commons.support.Resource interface in favor of the new
org.junit.platform.commons.io.Resource interface.

* Deprecate Resource-related methods in ReflectionSupport in favor of corresponding methods in
the new ResourceSupport class:

o findA11ResourcesInClasspathRoot(URI, Predicate)

o findAl11ResourcesInModule(String, Predicate)

o findAl11ResourcesInPackage(String, Predicate)

o streamAllResourcesInClasspathRoot(URI, Predicate)
o streamAllResourcesInModule(String, Predicate)

o streamAllResourcesInPackage(String, Predicate)

o tryToGetResources(String)

o tryToGetResources(String, ClasslLoader)

* Deprecate DiscoverySelectors.selectClasspathResource(Set) method in favor of
selectClasspathResourceByName(Set).

* Deprecate  (ClasspathResourceSelector.getClasspathResources() ~method in favor of
getResources().

* Deprecate the
EngineDiscoveryRequestResolver.Builder.addResourceContainerSelectorResolver(Predicate)
method in favor of addResourceContainerSelectorResolver (ResourceFilter).

228


https://github.com/junit-team/junit-framework/wiki/Upgrading-to-JUnit-5.14

Deprecate Resource-related methods in C(lasspathScanner in favor of new methods using
org.junit.platform.commons.io.Resource and ResourceFilter:

o scanForResourcesInPackage(String, Predicate)

o scanForResourcesInClasspathRoot(URI, Predicate)

New Features and Improvements

Emit discovery warning when @SuiteDisplayName is used with a blank string.

To help diagnosing potentially invalid invocations, the Console Launcher now logs warnings for
nonexistent classpath roots added via --classpath or --scan-classpath rather than silently
ignoring them.

New classpath resource abstraction in org.junit.platform.commons.io.Resource with support for
loading resources or finding them on the classpath via static utility methods in the new
org.junit.platform.commons.support.ResourceSupport class.

New Resource.of(String, URI) static factory = method  for creating an
org.junit.platform.commons.support.Resource.

New FileSource.withPosition(FilePosition) method to avoid the overhead of redundant
canonicalization of files when using FileSource.from(File, FilePosition) with many different
FilePosition instances for the same File.

New classpath resource abstraction in org.junit.platform.commons.io.Resource with support for
loading resources or finding them on the classpath via static utility methods in the new
org.junit.platform.commons.support.ResourceSupport class.

JUnit Jupiter

Deprecations and Breaking Changes

MediaType.APPLICATION_JSON_UTF_8 is now deprecated in favor of using
MediaType.APPLICATION_JSON, since the industry considers UTF-8 to be the implicit default
encoding for the application/json media type.

org.junit.jupiter.api.extension.MediaType is now deprecated in favor of the new
org.junit.jupiter.api.MediaType.

The publishFile(:-+) methods in TestReporter which accept an
org.junit.jupiter.api.extension.MediaType are now deprecated in favor of new variants which
acceptanorg.junit.jupiter.api.MediaType.

The publishFile(:+*) method in ExtensionContext which accepts an
org.junit.jupiter.api.extension.MediaType is now deprecated in favor of a new variant which
accepts anorg.junit.jupiter.api.MediaType.

org.junit.jupiter.params.support.ParameterInfo is now deprecated in favor of the new
org.junit.jupiter.params.ParameterInfo.

New Features and Improvements

MediaType now trims leading and trailing whitespace from a supplied value, type, or subtype.

229



* MediaType now eagerly rejects a blank value, type, or subtype.

JUnit Vintage

No changes.

5.13.4
Date of Release: July 21, 2025

Scope: Bug fixes and enhancements since 5.13.3

For a complete list of all closed issues and pull requests for this release, consult the 5.13.4 milestone
page in the JUnit repository on GitHub.

Overall Changes

New Features and Improvements

* Remove java.* packages from Import-Package headers in all jar manifests to maximize
compatibility with older OSGi runtimes.

JUnit Platform

Bug Fixes

* (lasspathResourceSelector no longer allows to be constructed with a resource name that is
blank after removing the leading slash.

* PackageSource.from(String) now allows to be constructed with an empty string to indicate the
default package.

JUnit Jupiter

New Features and Improvements

* Log only once per implementation type for CloseableResource implementations that do not
implement AutoCloseable to avoid flooding console output with this warning.

JUnit Vintage

No changes.

5.13.3
Date of Release: July 4, 2025

Scope: Bug fixes and enhancements since 5.13.2

For a complete list of all closed issues and pull requests for this release, consult the 5.13.3 milestone

230


https://github.com/junit-team/junit-framework/milestone/101?closed=1
https://github.com/junit-team/junit-framework/milestone/100?closed=1

page in the JUnit repository on GitHub.

Overall Changes

New Features and Improvements

» All experimental APIs have been promoted to maintained to indicate that they won’t be removed
in any future 5.x release.

JUnit Platform

No changes.
JUnit Jupiter

Bug Fixes

» Fix regression that caused top-level and static member classes annotated with @Nested to no
longer be executed because they caused a discovery issue to be reported.

 Stop reporting discovery issues for composed annotation classes that are meta-annotated with
@Nested.

 Stop reporting discovery issues for DefaultImpls classes generated by the Kotlin compiler for
interfaces with non-abstract test methods.

* When a customReason is supplied along with a null value for the default reason to
ConditionEvaluationResult.disabled(String,  String), the resulting reason is now
"my custom reason" instead of "null ==> my custom reason".

New Features and Improvements

* A blank reason supplied to a ConditionEvaluationResult factory method is now treated the same
as a null reason, resulting in an empty  Optional returned  from
ConditionEvaluationResult.getReason().

* The Javadoc for factory methods in ConditionEvaluationResult now explicitly states that both
null and blank values are supported for reason strings and that such values will result in an
empty Optional returned from ConditionEvaluationResult.getReason().

* Improve message of discovery issues reported for ineffective @0rder annotations.
JUnit Vintage

No changes.

5.13.2
Date of Release: June 24, 2025

Scope: Bug fixes and enhancements since 5.13.1

231



For a complete list of all closed issues and pull requests for this release, consult the 5.13.2 milestone
page in the JUnit repository on GitHub.

JUnit Platform

Bug Fixes

o If Git information is included in the Open Test Reporting XML format (see below), any
credentials that may be configured as part the remote.origin.url setting in Git were previously
written to the originUrl attribute of <git:repository> elements. For example, when cloning a
GitHub repository using a URL like username:password@github.com/organization/repository.git,
both username and password were included in the XML report. Since a report which includes
this information may be shared, published, or archived (for example, on a CI server), this was
reported as a potential security vulnerability (CVE-2025-53103). Any credentials are now
replaced with *** before writing them to the XML report.

Deprecations and Breaking Changes

* Including information about the Git repository (such as the commit hash and branch name) in
the Open Test Reporting XML format is now an opt-in feature that can be enabled via a
configuration parameter. Please refer to the User Guide for details.

JUnit Jupiter

Bug Fixes

 Stop reporting discovery issues for cyclic inner class hierarchies not annotated with @Nested.

* Stop reporting discovery issues for abstract inner classes that contain test methods but are not
annotated with @Nested.

» Stop reporting discovery issues for abstract test methods. Although they will not be executed, it
is a valid pattern to annotate them with @Test for documentation purposes and override them in
subclasses while re-declaring the @Test annotation.

New Features and Improvements

» JAVA_26 has been added to the JRE enum for use with JRE-based execution conditions.

JUnit Vintage

No changes.

5.13.1
Date of Release: June 7, 2025

Scope: Bug fixes and enhancements since 5.13.0

For a complete list of all closed issues and pull requests for this release, consult the 5.13.1 milestone

232


https://github.com/junit-team/junit-framework/milestone/98?closed=1
https://username:password@github.com/organization/repository.git
https://github.com/junit-team/junit-framework/milestone/97?closed=1

page in the JUnit repository on GitHub.

JUnit Platform

No changes.

JUnit Jupiter

Bug Fixes

* The 5.13.0 release introduced a regression regarding the execution order in test classes
containing both test methods and @Nested test classes. When classpath scanning was used
during test discovery — for example, when resolving a package selector for a @Suite class — test
methods in @Nested classes were executed before test methods in their enclosing class. This
undesired change in behavior has now been reverted so that tests in @Nested test classes are
always executed after tests in enclosing test classes again.

 Fix support for AnnotationBasedArgumentsProvider implementations that override the deprecated
provideArguments(ExtensionContext, Annotation) method.

JUnit Vintage

No changes

5.13.0

Date of Release: May 30, 2025

Scope:

Introduce @ClassTemplate and @ParameterizedClass support in JUnit Jupiter

* Access to ParameterInfo for JUnit Jupiter extensions

* New @SentenceFragment annotation for use with IndicativeSentences display name generator
* Add --redirect-stdout and --redirect-stderr options to ConsolelLauncher

* Introduce test discovery support in EngineTestKit

* Reporting of discovery issues for test engines

* Resource management for launcher sessions and execution requests

* GraalVM: removal of native-image.properties files from JARs

* Bug fixes and other minor improvements

For complete details consult the 5.13.0 Release Notes online.

233


https://docs.junit.org/5.13.0/release-notes/index.html

Appendix

Reproducible Builds
Starting with version 5.7, JUnit 5 aims for its non-javadoc JARs to be reproducible.

Under identical build conditions, such as Java version, repeated builds should provide the same
output byte-for-byte.

This means that anyone can reproduce the build conditions of the artifacts on Maven
Central/Sonatype and produce the same output artifact locally, confirming that the artifacts in the
repositories were actually generated from this source code.

Dependency Metadata

Artifacts for final releases and milestones are deployed to Maven Central. Consult Sonatype’s
documentation for how to consume those artifacts with a build tool of your choice.

Snapshot artifacts are deployed to Sonatype’s snapshots repository under /org/junit. Please refer to
Sonatype’s documentation for instructions on how to consume them with a build tool of your
choice.

The sections below list all artifacts with their versions for the three groups: Platform, Jupiter, and
Vintage. The Bill of Materials (BOM) contains a list of all of the above artifacts and their versions.

Aligning dependency versions

To ensure that all JUnit artifacts are compatible with each other, their versions
@ should be aligned. If you rely on Spring Boot for dependency management, please
- see the corresponding section. Otherwise, instead of managing individual versions
of the JUnit artifacts, it is recommended to apply the BOM to your project. Please

refer to the corresponding sections for Maven or Gradle.

JUnit Platform

* Group ID: org.junit.platform
* Version: 1.174.1

o Artifact IDs:

junit-platform-commons

Common APIs and support utilities for the JUnit Platform. Any API annotated with
@API(status = INTERNAL) is intended solely for usage within the JUnit framework itself. Any
usage of internal APIs by external parties is not supported!

junit-platform-console

Support for discovering and executing tests on the JUnit Platform from the console. See
Console Launcher for details.

234


https://reproducible-builds.org/
https://central.sonatype.com/
https://central.sonatype.org/consume/
https://central.sonatype.org/consume/
https://central.sonatype.com/service/rest/repository/browse/maven-snapshots
https://central.sonatype.com/service/rest/repository/browse/maven-snapshots/org/junit/
https://central.sonatype.org/publish/publish-portal-snapshots/#consuming-snapshot-releases-for-your-project

junit-platform-console-standalone

An executable Fat JAR that contains all dependencies is provided in Maven Central under the
junit-platform-console-standalone directory. See Console Launcher for details.

junit-platform-engine

Public API for test engines. See Registering a TestEngine for details.

junit-platform-jfr
Provides a LauncherDiscoverylListener and TestExecutionListener for Java Flight Recorder
events on the JUnit Platform. See Flight Recorder Support for details.

junit-platform-launcher

Public API for configuring and launching test plans — typically used by IDEs and build tools.
See JUnit Platform Launcher API for details.

junit-platform-reporting
TestExecutionListener implementations that generate test reports —typically used by IDEs
and build tools. See JUnit Platform Reporting for details.

junit-platform-runner

Runner for executing tests and test suites on the JUnit Platform in a JUnit 4 environment. See
Using JUnit 4 to run the JUnit Platform for details.

junit-platform-suite

JUnit Platform Suite artifact that transitively pulls in dependencies on junit-platform-suite-
api and junit-platform-suite-engine for simplified dependency management in build tools
such as Gradle and Maven.

junit-platform-suite-api
Annotations for configuring test suites on the JUnit Platform. Supported by the JUnit
Platform Suite Engine and the JUnitPlatform runner.

junit-platform-suite-commons

Common support utilities for executing test suites on the JUnit Platform.

junit-platform-suite-engine
Engine that executes test suites on the JUnit Platform; only required at runtime. See JUnit
Platform Suite Engine for details.

junit-platform-testkit

Provides support for executing a test plan for a given TestEngine and then accessing the
results via a fluent API to verify the expected results.

JUnit Jupiter

* Group ID: org.junit.jupiter

e Version: 5.14.1

235


https://repo1.maven.org/maven2/org/junit/platform/junit-platform-console-standalone

* Artifact IDs:

junit-jupiter
JUnit Jupiter aggregator artifact that transitively pulls in dependencies on junit-jupiter-api,
junit-jupiter-params, and junit-jupiter-engine for simplified dependency management in
build tools such as Gradle and Maven.

junit-jupiter-api
JUnit Jupiter API for writing tests and extensions.

junit-jupiter-engine
JUnit Jupiter test engine implementation; only required at runtime.

junit-jupiter-params
Support for Parameterized Classes and Tests in JUnit Jupiter.

junit-jupiter-migrationsupport

Support for migrating from JUnit 4 to JUnit Jupiter; only required for support for JUnit 4’s
@Ignore annotation and for running selected JUnit 4 rules.

JUnit Vintage

* Group ID: org.junit.vintage
* Version: 5.74.1
* Artifact ID:
junit-vintage-engine
JUnit Vintage test engine implementation that allows one to run vintage JUnit tests on the

JUnit Platform. Vintage tests include those written using JUnit 3 or JUnit 4 APIs or tests
written using testing frameworks built on those APIs.

Bill of Materials (BOM)

The Bill of Materials POM provided under the following Maven coordinates can be used to ease
dependency management when referencing multiple of the above artifacts using Maven or Gradle.

* Group ID: org.junit
 Artifact ID: junit-bom

e Version: 5.14.1

Dependencies

Most of the above artifacts have a dependency in their published Maven POMs on the following
@API Guardian JAR.

* Group ID: org.apiquardian

» Artifact ID: apiguardian-api

236


https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Importing_Dependencies
https://docs.gradle.org/current/userguide/platforms.html#sub:bom_import

e Version: 1.1.2

In addition, most of the above artifacts have a direct or transitive dependency on the following
OpenTest4] JAR.

* Group ID: org.opentest4j
» Artifact ID: opentest4]

e Version: 1.3.0

Dependency Diagram

[org junit.platform

orgjunitjupiter

237



	JUnit
	Table of Contents
	Overview
	Writing Tests
	Annotations
	Definitions
	Test Classes and Methods
	Display Names
	Assertions
	Assumptions
	Exception Handling
	Disabling Tests
	Conditional Test Execution
	Tagging and Filtering
	Test Execution Order
	Test Instance Lifecycle
	Nested Tests
	Dependency Injection for Constructors and Methods
	Test Interfaces and Default Methods
	Repeated Tests
	Parameterized Classes and Tests
	Class Templates
	Test Templates
	Dynamic Tests
	Timeouts
	Parallel Execution
	Built-in Extensions

	Migrating from JUnit 4
	Running Tests
	IDE Support
	Build Support
	Console Launcher
	Using JUnit 4 to run the JUnit Platform
	Discovery Selectors
	Configuration Parameters
	Tags
	Capturing Standard Output/Error
	Using Listeners and Interceptors
	Stack Trace Pruning
	Discovery Issues

	Extension Model
	Registering Extensions
	Conditional Test Execution
	Test Instance Pre-construct Callback
	Test Instance Factories
	Test Instance Post-processing
	Test Instance Pre-destroy Callback
	Parameter Resolution
	Test Result Processing
	Test Lifecycle Callbacks
	Exception Handling
	Pre-Interrupt Callback
	Intercepting Invocations
	Providing Invocation Contexts for Class Templates
	Providing Invocation Contexts for Test Templates
	Keeping State in Extensions
	Supported Utilities in Extensions
	Relative Execution Order of User Code and Extensions

	Advanced Topics
	JUnit Platform Reporting
	JUnit Platform Suite Engine
	JUnit Platform Test Kit
	JUnit Platform Launcher API
	Test Engines

	API Evolution
	Release Notes
	Appendix

